In this talk, we shall focus on certain dynamically interesting measures arising in holomorphic dynamics beyond the classical framework of maps. We will consider measures associated with semigroups and, more generally, with meromorphic correspondences, that are invariant in a specific sense. Our results are of two different flavours. The first type of results deal with potential-theoretic properties of the measures associated with certain polynomial semigroups, while the second type of results are about recurrence phenomena in the dynamics of meromorphic correspondences. The unifying features of these results are the use of the formalism of correspondences in their proofs, and the fact that the measures that we consider are those that describe the asymptotic distribution of the iterated inverse images of a generic point.

The first class of results involve giving a description of a natural invariant measure associated with a finitely generated polynomial semigroup (which we shall call the Dinhâ€“Sibony measure) in terms of potential theory. This requires the theory of logarithmic potentials in the presence of an external field, which we can describe explicitly given a choice of a set of generators. In particular, we generalize the classical result of Brolin to certain finitely generated polynomial semigroups. To do so, we establish the continuity of the logarithmic potential for the Dinhâ€“Sibony measure, whose proof will be sketched. If time permits, we will discuss bounds on the capacity and diameter of the Julia sets of such semigroups, for which we use the $F$-functional of Mhaskar and Saff.

The second class of results involves meromorphic correspondences. These are, loosely speaking, multi-valued analogues of meromorphic maps. We shall present an analogue of the Poincare recurrence theorem for meromorphic correspondences with respect to the measures alluded to above. Meromorphic correspondences present a significant measure-theoretic obstacle: the image of a Borel set under a meromorphic correspondence need not be Borel. We manage this issue using the Measurable Projection Theorem, which is an aspect of descriptive set theory. If time permits, we shall also discuss a result on the invariance properties of the supports of the measures mentioned.

- All seminars.
- Seminars for 2021

Last updated: 06 Jun 2023