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Introduction

Let us define a relation

λ� µ→ ν (1)

if there exist Hermitian matrices A,B with eigenvalues λ, µ
respectively such that A + B has eigenvalues ν.
Weyl asked the question of determining necessary and
sufficient conditions on λ, µ, ν ∈ Spec for the relation (1) to
hold.
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Introduction

As conjectured by Horn and proved by Klyachko, Knutson
and Tao, the set

HORNλ�µ := {ν ∈ Spec : λ� µ→ ν}

of possible ν arising from a given choice of λ, µ forms a
polytope (known as the Horn polytope), given by the trace
condition ∑

λ+
∑

µ =
∑

ν

together with a recursively defined set of linear inequalities
known as the Horn inequalities.
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Introduction

Figure: The triangular region T with n = 4, tilted to lie on the
equilateral lattice (so that a rhombus is precisely the union of two
adjacent unit equilateral triangles).
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Introduction

One of the key tools used in the proof of the Horn
conjecture is that of a hive.
A rhombus is a quadruple ABCD in the lattice Z2 of one of
the following three forms for some i , j ∈ Z2:

(i) Blue
(A,B,C,D) = ((i , j), (i + 1, j), (i + 2, j + 1), (i + 1, j + 1))

(ii) Green
(A,B,C,D) = ((i , j), (i + 1, j + 1), (i + 1, j + 2), (i , j + 1))

(iii) Red (A,B,C,D) = ((i , j), (i , j − 1), (i + 1, j − 1), (i + 1, j)).
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We refer to AC as the long diagonal of the rhombus and BD
as the short diagonal. A function h : Ω→ R defined on some
subset Ω of Z2 is said to be rhombus-concave if one has

h(A) + h(C) ≤ h(B) + h(D) (2)

for all rhombi ABCD in Ω. A hive is a rhombus concave
function h : T → R defined on the triangle

T := {(i , j) ∈ Z2 : 0 ≤ i ≤ j ≤ n}. (3)
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Introduction

Figure: A schematic depiction of the boundary condition λ� µ→ ν.
Thus, the hive increases according to the tuple λ as one moves
from the southern vertex (0, 0) to the western one (0, n), according
to the tuple µ as one moves from the western vertex (0,n) to the
northern vertex (n,n), and according to the tuple ν as one moves
from the southern vertex (0,0) to the northern vertex (n,n).
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Introduction

If λ, µ, ν ∈ Spec, we say that a hive h has boundary condition
λ� µ→ ν if one has

h(0, i) =
i∑

j=1

λj (4)

h(i ,n) =
∑

λ+
i∑

j=1

µj (5)

h(i , i) =
i∑

j=1

νj (6)

for all 0 ≤ i ≤ n, and write HIVEλ�µ→ν for the set of all hives
with boundary condition λ� µ→ ν.
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Introduction

Figure: A hive with boundary condition
(40,30,20,10) � (40,30,20,10)→ (65,55,45,35).
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Introduction

We also adopt the “wildcard convention” that replacing a
tuple such as λ, µ, or ν with an asterisk ∗ denotes the
operation of taking unions over all values of that tuple, thus
for instance

HIVEλ�µ→∗ :=
⋃
ν

HIVEλ�µ→ν

HIVEλ�∗→ν :=
⋃
µ

HIVEλ�µ→ν

HIVE∗�∗→∗ :=
⋃
λ,µ,ν

HIVEλ�µ→ν

denote the hives with boundary conditions λ� µ→ ∗,
λ� ∗ → ν,and ∗� ∗ → ∗ respectively. Note that all of these
sets are convex.
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Introduction
There is a natural probability measure on the Horn polytope
HORNλ�µ, referred to as the Horn probability measure,
defined as the eigenvalues of A + B when A,B are chosen
independently and uniformly from the space of all
Hermitian matrices with eigenvalues λ, µ respectively. This
Horn measure turns out to be piecewise polynomial and
was computed explicitly by Coquereaux and Zuber to be
given by the formula

V (ν)V (τ)

V (λ)V (µ)
|HIVEλ�µ→ν | dν

for λ, µ ∈ Spec◦, where

V (λ) = Vn(λ) :=
∏

1≤i<j≤n

(λi − λj)

is the Vandermonde determinant, and τ is the tuple
τ := (n,n − 1, . . . ,1).
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Introduction
We introduce the relation

diag(λ)→ a

for λ ∈ Spec and a ∈ Rn to denote the claim that there exists
a Hermitian matrix A with eigenvalues λ and diagonal
entries a1, . . . ,an. The classical Schur–Horn theorem asserts
that the relation diag(λ)→ a holds if and only if majorized by
λ in the sense that one has the trace condition∑

a =
∑

λ

and the majorizing inequalities

ai1 + · · ·+ aik ≤ λ1 + · · ·+ λk

for all 1 ≤ i1 < · · · < ik ≤ n; equivalently, a lies in the
permutahedron formed by the convex hull of the image of λ
under the permutation group Sn.
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Introduction

Figure: An n = 4 Gelfand–Tsetlin pattern. Each number λi,j in the
pattern is greater than or equal to numbers immediately to the
northeast or southeast of the pattern; in particular, every row of
the pattern is decreasing. Note that such patterns are sometimes
depicted as inverted pyramids instead of pyramids in the
literature. 13 / 112



Introduction
Now define a Gelfand–Tsetlin pattern to be a pattern
γ = (λj,k )1≤j≤k≤n of real numbers obeying the interlacing
conditions

λj,k+1 ≥ λj,k ≥ λj+1,k+1

for 1 ≤ j ≤ k ≤ n − 1. We say that this pattern has boundary
condition diag(λ)→ a for some λ ∈ Specn and a ∈ Rn if one
has

λj,n = λj

for 1 ≤ j ≤ n and
k∑

j=1

λj,k =
k∑

j=1

aj

for 1 ≤ k ≤ n.
We remark that for λ ∈ Spec◦n, GTdiag(λ)→∗ is a(n

2

)
-dimensional polytope, which we call a Gelfand–Tsetlin

polytope, while GTdiag(∗)→∗ is a
(n+1

2

)
-dimensional convex

cone, which we call the Gelfand–Tsetlin cone. 14 / 112



Introduction

Figure: A Gelfand–Tsetlin pattern with boundary
diag(15,5,−5,−15)→ (3,4,3,−10).
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Introduction

We recall the following standard facts about Gelfand–Tsetlin
polytopes:
Proposition: Let λ ∈ Spec◦.

(i) If a ∈ Rn, then diag(λ)→ a holds if and only if GTdiag(λ)→a
is non-empty.

(ii) The
(n

2

)
-dimensional volume of GTdiag(λ)→∗ is V (λ)/V (τ).

(iii) Let A be a random Hermitian matrix with eigenvalues λ,
drawn using the U(n)-invariant Haar probability
measure. For 1 ≤ k ≤ n, let λ1,k ≥ · · · ≥ λk ,k be
eigenvalues of the top left k × k minor of A. Then
(λj,k )1≤j≤k≤n lies in the polytope GTdiag(λ)→∗ with the
uniform probability distribution; it has boundary data
diag(λ)→ a where a = (a11, . . . ,ann) are the diagonal
entries of A.
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Introduction

(iv) If Λ ∈ Spec has large gaps in the sense that

min
1≤i<n

Λi − Λi+1 > λ1 − λn,

then there is a volume-preserving linear bijection
between GTdiag(λ)→a and HIVEΛ�λ→Λ+a for any a ∈ Rn,
with a Gelfand–Tsetlin pattern (λj,k )1≤j≤k≤n being
mapped to the hive h : T → R defined by the formula

h(i , j) = Λ1 + · · ·+ Λj + λ1,j + · · ·+ λi,j ;
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Introduction

Figure: The hive associated with the Gelfand–Tsetlin pattern in an
earlier figure and some large gap tuple Λ.
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Introduction

Figure: A schematic depiction of the boundary conditions of the
hive in the previous figure. The horizontal “creases” inside the
triangle indicate that the rhombus concavity condition is
essentially an automatic consequence of the large gaps
hypothesis for rhombi that cross these creases.
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Introduction

Figure: A schematic depiction of an augmented hive in
AUGHIVEdiag(λ�µ→ν)→a, where we artificially shift by a tuple Λ with
large gaps in order to create two hives, instead of a hive and a
Gelfand–Tsetlin pattern.
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Introduction

It is natural to ask if Lebesgue measure on the polytope
AUGHIVEdiag(λ�µ→∗)→∗ also exhibits concentration. As a first
step towards this goal, we are able to establish this for
spectra λ, µ that are not deterministic, but are instead
drawn from (scalar multiples of) the GUE ensemble.
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Introduction

To establish normalization conventions, we define a GUE
random matrix to be a random Hermitian matrix
M = (ξij)1≤i,j≤n where ξij = ξji for i < j are independent
complex gaussians of mean zero and variance 1, ξii are
independent real gaussians of mean zero and variance 1,
independent of the ξij for i < j .
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Introduction

As is well known, if σ > 0 and A is a random matrix with A√
σ2n

drawn from the GUE ensemble, then the eigenvalues
λ ∈ Spec of A are distributed with probability density
function

Cnσ
− n(n+1)

2 exp

(
− |λ|

2

2σ2n

)
V (λ)2

for some constant Cn > 0 depending only on n.

23 / 112



Introduction
If σλ, σµ > 0 are fixed and A,B are independent random
matrices with A√

σ2
λn
, B√

σ2
µn

drawn from the GUE ensemble,
then the the distribution of the eigenvalues of A + B are the
pushforward of the measure on the n(n + 1)-dimensional
augmented hive cone

AUGHIVEdiag(∗�∗→∗)→∗ :=
⋃

λ,µ,ν,π

(HIVEλ�µ→ν × GTdiag(ν)→π),

where the probability density function of this measure is
given by

Cn,σλ,σµ exp

(
− |λ|

2

2σ2
λn
− |µ|

2

2σ2
µn

)
V (λ)V (µ) (7)

on the slices
AUGHIVEdiag(λ�µ→∗)→∗ :=

⋃
ν,π

(HIVEλ�µ→ν × GTdiag(ν)→π).
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Introduction

Since GUE matrices have an operator norm of O(
√

n) with
overwhelming probability (by which we mean with
probability 1−O(n−C) for any fixed C > 0), the boundary
differences λ, µ, ν of an augmented hive (h, γ) drawn from
the above measure will be of size O(n) with overwhelming
probability, and hence the entries h(v), v ∈ T of the hive will
be of size O(n2) with overwhelming probability. From this
fact (and some crude moment estimates to treat the
contribution of the exceptional event), it is not difficult to
show the “trivial bound” that the variance var h(v) of any
individual entry h(v) of the hive is bounded by O(n4).
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Introduction

The main result of this talk is a gain over this trivial bound:

Theorem (Concentration of augmented hives)
Let σλ, σµ > 0 be fixed, and let (h, γ) ∈ AUGHIVEdiag(∗�∗→∗)→∗
be a random augmented hive drawn using the probability
measure (7). Then for all v ∈ T , we have the variance bound

var h(v) = o(n4)

as n→∞, uniformly in v .

Informally, this theorem asserts that randomly selected
hives (with GUE boundary data) have an asymptotic limiting
profile, at least in a subsequential sense.
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Methods of proof

The first step is to exploit the octahedron recurrence, which
has appeared in the enumerative combinatorics literature
several times, which was observed by Knutson, Tao and
Woodward to witness an “associativity” property⋃

ν

HIVEλ�µ→ν × HIVEγ�ν→π ≡
⋃
σ

HIVEγ�λ→σ × HIVEσ�µ→π

on hives related to the trivial associativity

(A + B) + C = A + (B + C)

of the addition operation on Hermitian matrices A,B,C.
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Methods of proof

Figure: A schematic depiction of a pair in
GTdiag(λ)→b × GTdiag(µ)→a−b, where an artificial shift by a tuple Λ
with large gaps is used to re-interpret this pair as a pair of hives
with a common edge.
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Methods of proof

In our context (viewing Gelfand–Tsetlin patterns as
degenerations of hives), the octahedron recurrence is a
piecewise-linear volume-preserving bijection

oct : GTdiag(∗)→∗ × GTdiag(∗)→∗ → AUGHIVEdiag(∗�∗→∗)→∗

between the two n(n − 1)-dimensional convex cones
GTdiag(∗)→∗ × GTdiag(∗)→∗, AUGHIVEdiag(∗�∗→∗)→∗.
In fact oct is a piecewise-linear volume-preserving bijection

oct :
⋃
b

GTdiag(λ)→b×GTdiag(µ)→a−b →
⋃
ν

AUGHIVEdiag(λ�µ→ν)→a

for any λ, µ ∈ Spec◦ and a ∈ Rd .
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Methods of proof

Theorem (Excavation form of octahedron recurrence)
Let v be an element of the triangle T . Then there is an explicit
finite family Wv : GTdiag(∗)→∗ × GTdiag(∗)→∗ → R of linear
functionals on GTdiag(∗)→∗ × GTdiag(∗)→∗, such that whenever
(h,g) = oct(g1,g2) is the image of the octahedron recurrence
for some g1,g2 ∈ GTdiag(∗)→∗, then

h(v) = max
w∈W

w(g1,g2).

The linear functionals are given in terms of lozenge tilings of
a certain hexagon 7v associated to v ; this version of the
Speyer formula has not explicitly been written previously in
the literature, and may be of independent interest.
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Methods of proof
Direct calculation reveals that the density function on
AUGHIVEdiag(λ�µ→∗)→∗ is log-concave. The supremum in
Theorem 2 can then be handled by the following tool, which
may be of independent interest:

Lemma
Let η be an log-concave probability measure in Rd with finite
second moments, and let W be a family of affine functions
w : Rd → R. Then

varη

(
sup

w∈Wv

w
)
� sup

w∈W
(varη w) log(2 + d).

Here of course we use the probabilistic notation
Eηw :=

∫
Rd w dη and varη w := Eη|w |2 − |Eηw |2.

This lemma is a consequence of Cheeger’s inequality and
recent work of Klartag on the KLS conjecture.
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Methods of proof

In view of this lemma, it would now suffice to establish the
variance bound

var w(γ1, γ2) = O(n4−c)

for all v ∈ T and w ∈Wv and some constant c > 0, where
(γ1, γ2) was the random variable

(γ1, γ2) =
(
(λj,k )1≤j≤k≤n, (µj,k )1≤j≤k≤n

)
;

the additional factor of n−c is needed to overcome the
logarithmic loss in the preceding Lemma. This is a variance
estimate for linear statistics of the GUE minor process.
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Methods of proof

As it turns out, the covariance estimates for eigenvalue gaps
of GUE established by Cipolloni, Erdős and Schröder,
combined with some further manipulations from the theory
of determinantal processes to analyze the minor process,
are almost enough to obtain this sort of bound; there is
however a technical difficulty because these bounds are
only established in the bulk of the spectrum and not on the
edge. However, the contributions coming from the edge
region can be controlled by relatively crude estimates, and
after removing these contributions to focus on the bulk
contribution we will be able to make the above strategy
work.
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Poincaré inequalities over log-concave measures

We establish a useful Poincaré inequality over log-concave
measures. Namely, we show
Proposition (Poincaré inequality on log-concave
measures)
Let η be an log-concave probability measure in Rd with finite
second moments, and define the d × d inertia matrix M by the
formula

M := EηxxT − (Eηx)(Eηx)T .

Then for any Lipschitz function f : Rd → R, one has

varη f �
(
Eη|∇f |2

)
‖M‖op log(2 + d).
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Poincaré inequalities over log-concave measures

Without loss of generality, we may assume that η is an
isotropic measure in the sense that

Eηx = 0; EηxxT = Id .

Define the Cheeger constant DChe(η) of η (with respect to the
Euclidean inner product) by the formula

DChe(η) := inf
A⊂Rd

∫
∂A ρ

min(η(A),1− η(A))

where the infimum runs over all open subsets A of Rd with
smooth boundary with 0 < η(A) < 1, and ∂A is integrated
using surface measure.
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Poincaré inequalities over log-concave measures

Proof.
By the Cheeger inequality, one has the Poincaré inequality

DChe(η)2 varη f � Eη|∇f |2

so the task reduces to (and is in fact equivalent to) the lower
bound

DChe(η)� 1√
log(2 + d)

on the Cheeger constant of an isotropic log-concave
measure.
But this follows from recent work of Klartag (building upon
previous advances by Chen, Klartag-Lehec and
Lee-Vempala.
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Poincaré inequalities over log-concave measures
Proposition (Weighted Poincaré inequality on
log-concave measures)
Let η be an log-concave probability measure in Rd with finite
second moments. Express Rd as a Cartesian product
Rd1 × · · · × Rdk for some d1, . . . ,dk summing to d (so that a
vector x ∈ Rd is expressed as (x1, . . . , xk ) for xj ∈ Rdj ), and for
each i = 1, . . . , k , and define the dj × dj inertia matrix Mj by the
formula

Mj := EηxjxT
j − (Eηxj)(Eηxj)

T .

Then for any Lipschitz function f : Rd → R, and any weights
α1, . . . , αk > 0, one has

varη f �

Eη
k∑

j=1

αj |∇j f |2
 k∑

j=1

α−2
j ‖Mj‖2op

1/2

log(2 + d).
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Poincaré inequalities over log-concave measures

Proof.
By pushing forward η by the map
(x1, . . . , xk ) 7→ (α

1/2
1 x1, . . . , α

1/2
k xk ) we may normalize αj = 1

for all j , so that
∑k

j=1 αj |∇j f |2 = |∇f |2. By the previous
proposition, it thus suffices to establish the bound

‖M‖op ≤

 k∑
j=1

‖Mj‖2op

1/2

.
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Poincaré inequalities over log-concave measures

Proof (continued).
For any x = (x1, . . . , xk ) ∈ Rd , where xj ∈ Rdj for all j , it
follows from the positive semi-definiteness of M and the
triangle inequality followed by Cauchy–Schwarz that

(xT Mx)1/2 ≤
k∑

j=1

(xT
j Mjxj)

1/2

≤
k∑

j=1

‖Mj‖op|xj |

≤

 k∑
j=1

‖Mj‖2op

1/2

|x |

and the claim follows.
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The octahedron recurrence

Let λ, µ, γ, π ∈ Spec◦. Knutson-Tao-Woodward constructed a
volume-preserving, piecewise-linear octahedron recurrence

oct :
⋃
σ

HIVEσ�µ→π×HIVEγ�λ→σ →
⋃
ν

HIVEλ�µ→ν×HIVEγ�ν→π

(8)
and an explicit formula for it given using the work of Speyer.
We now recall a version of this formula that will be
convenient for our purposes. We will identify a pair
(h,h′) ∈ HIVEλ�µ→ν × HIVEγ�ν→π with a single function
h̃ : T ∪ T ′ → R defined on the square T ∪ T ′ = {0, . . . ,n}2.
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The octahedron recurrence

Figure: A schematic depiction of the octahedron recurrence that
transforms one pair (k , k ′) ∈ HIVEσ�µ→π × HIVEγ�λ→σ of hives
into another (h,h′) ∈ HIVEλ�µ→ν × HIVEγ�ν→π. The hives
h,h′, k , k ′ have been shifted to lie on triangles T ,T ′,U,U ′

respectively.
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The octahedron recurrence
h̃ is defined by the formula

h̃(i , j) := h(i , j) (9)

when (i , j) lies in the triangle T := {(i , j) : 0 ≤ i ≤ j ≤ n}, and

h̃(i , j) := h′(j ,n − i + j)−
∑

γ (10)

when (i , j) lies in the opposite triangle
T ′ := {(i , j) : 0 ≤ j ≤ i ≤ n}.
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Note that both definitions agree on the diagonal
{(i , i) : 0 ≤ i ≤ n} due to the boundary values of the hives
h,h′. The function h̃ will be rhombus concave on T and on
T ′, but not necessarily concave along rhombi that cross the
diagonal separating T and T ′.
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The octahedron recurrence

Figure: The n = 2 case of the octahedron recurrence. One can
determine the value ν1 in the right image from the data in the left
image by the formula ν1 = max(

∑
λ+ µ1 + γ1 − σ1, λ1 + π1 − σ1).
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The octahedron recurrence
In a similar vein, we identify a pair
(k , k ′) ∈ HIVEσ�µ→π × HIVEγ�λ→σ with a single function
k̃ : U ∪ U ′ → R defined on the square. Even though T ∪ T ′

and U ∪ U ′ are both technically equal to the same set
{0, . . . ,n}2, it is conceptually better to think of these sets as
being distinct (except on the boundary). We will view these
two copies of {0, . . . ,n}2 as the upper and lower faces
respectively of a certain tetrahedron tet, and the
octahedron recurrence oct can be constructed by
“excavating” that tetrahedron.

Figure: Lower and upper panels of tet.
Image credits, Henriques and Kamnitzer
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The octahedron recurrence

For vertices v = (i , j) in the interior or {0, . . . ,n}2, the
octahedron recurrence specifying h̃(i , j) is more complicated
to describe. It was initially defined by recursively
“excavating” a real-valued function on a tetrahedron
{(a,b, c,d) ∈ Z4 : a,b, c,d ≥ 0; a + b + c + d = n} with k̃
describing the values on the top two faces, and h̃ the bottom
two faces.
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An alternate description was given by Speyer, in terms of
perfect matchings of an “excavation graph” associated to
(i , j). We will use a modification of Speyer’s formula that is
more convenient for our purposes, in which the perfect
matchings are replaced the dual concept of a lozenge tiling.
To describe this formula we need some definitions.

(a) Perfect matching (b) Lozenge (and triangle) tiling

Figure: Correspondence between perfect matchings and lozenge
and triangle tilings
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The octahedron recurrence

Definition (Lozenges and border triangles)
A lozenge is a quadruple ABCD in U or U ′ that is one of
following three forms for some i , j ∈ Z:

(i) (A,B,C,D) = ((i , j), (i + 1, j − 1), (i + 2, j − 1), (i + 1, j))

(ii) (A,B,C,D) = ((i , j), (i , j + 1), (i − 1, j + 2), (i − 1, j + 1))

(iii) (A,B,C,D) = ((i , j), (i + 1, j), (i + 1, j + 1), (i , j + 1)).
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Definition (Continued)
Lozenges of type (i) will be called blue if they lie in U and red
if they lie in U ′; lozenges of type (ii) will be called red if they
lie in U and blue if they lie in U ′; and lozenges of type (iii)
that lie either in U or in U ′ will be called green. A quadruple
of the form (iii) that crosses the diagonal separating U and
U ′ is not considered to be a lozenge, but instead splits into
two border triangles as defined below.
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The octahedron recurrence

Definition (Continued)
A border edge is an edge AC of the form
(A,C) = ((i ,n − i), (i + 1,n − i − 1)) for some 0 ≤ i < n; the
border edges thus separate U and U ′. Each border edge
(A,C) = ((i , n− i), (i + 1, n− i − 1)) is bordered by two border
triangles ABC, defined as follows:
• (Upward triangle)

(A,B,C) = ((i ,n − i), (i + 1,n − i), (i + 1,n − i − 1)).
• (Downward triangle)

(A,B,C) = ((i ,n − i), (i ,n − i − 1), (i + 1,n − i − 1)).

Figure: A typical lozenge tiling of 7(3,2), n = 6.
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The octahedron recurrence
Given a lozenge � = ABCD and a function k̃ : {0, . . . ,n}2 → R
defined as before, we define the weight wt(�) = wt(�, k̃) to
be the quantity

wt(�) :=
1
3

(k̃(A) + k̃(C)− k̃(B)− k̃(D)).

Similarly, given a border triangle ∆ = ABC, the weight
wt(∆) = wt(τ, k̃) is defined as

wt(∆) :=
1
3

(k̃(A)− k̃(B)).

Figure: A typical lozenge tiling of 7(3,2), n = 6.
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The octahedron recurrence

Figure: The two bottom panels have been shown. The green and
pink dots correspond to vertices that have been excavated on the
two top faces. The pink dot also corresponds to the vertex on the
top face at which we are computing the value of the hive. A
matching of the graph has been depicted in dashed yellow lines.
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The octahedron recurrence

Figure: The matching in the preceding figure has been converted
into a lozenge tiling. Lozenges corresponding to edges of the
three different orientations have been colored differently.
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The octahedron recurrence

1
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1 1 11 1

Figure: The pink dot corresponds to the vertex on the top face at
which we are computing the value of the hive. The numbers at the
sites tell us how many hive excavations have taken place at the
respective positions. If there is no number at a site, there are no
excavations at the corresponding vertex. A matching of the graph
has been depicted in dashed yellow lines.
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The octahedron recurrence
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Figure: The matching in the preceding figure has been converted
into a lozenge tiling. Lozenges corresponding to edges of the
three different orientations have been colored differently.
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The octahedron recurrence

“Long Edge”

3 2 121

1

1

22

2 2

2

2

2 2 11

11 11

11 11

11

1 1

Figure: The green dot corresponds to the vertex on the top face at
which we are computing the value of the hive. Since the bottom
faces correspond to modified GT patterns, the direction of the
“Long Edge” is that in which the honeycomb edges corresponding
to the hive that the GT pattern has been converted into are long.
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The octahedron recurrence

3 2 121

1

1

22

2 2

2

2

2 2 11

11 11

11 11

11

1 1

Figure: The matching in the preceding figure has been converted
into a lozenge tiling. Lozenges corresponding to edges of the
three different orientations have been colored differently.
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The octahedron recurrence

Definition (Octahedron recurrence)
If v = (i , j) lies in the interior of {0, . . . ,n}2 = T ∪ T ′, then the
excavation hexagon 7v = ABCDEF in {0, . . . ,n}2 = U ∪ U ′

centered at v is defined as follows:
• If v ∈ T (i.e., i ≤ j), then

(A,B,C,D,E ,F ) =

((0,n), (0, j), (i , j − i), (n + i − j , j − i), (n + i − j , j), (i ,n)).

• If v ∈ T ′ (i.e., i ≥ j), then

(A,B,C,D,E ,F ) =

((i − j ,n + j − i), (i − j , j), (i ,0), (n,0), (n, j), (i ,n + j − i)).
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The octahedron recurrence

Note that these two definitions agree when v ∈ T ∩ T ′ (i.e.,
when i = j). The original point v = (i , j) is then the
intersection of the diagonals BE and CF . The line AD is
called the equator; it lies on the border between U and U ′.

Definition
The weight wt(7v ) = wt(7v , k̃) of this hexagon is defined as

wt(7v ) :=
1
3

(k̃(B) + k̃(C)− k̃(D) + k̃(E) + k̃(F )). (11)
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The octahedron recurrence

Definition
A lozenge tiling Ξ of the excavation hexagon 7v is a partition
of the (solid) hexagon into (solid) lozenges and (solid) border
triangles, such that each border edge on the equator is
adjacent to exactly one border triangle in the tiling. An
example of a lozenge tiling is the standard lozenge tiling Ξ0, in
which the trapezoid ABEF is tiled by blue lozenges in U and
by green lozenges and downward border triangles in U ′,
while the opposite trapezoid BCDE is tiled by green lozenges
and upward border triangles in U and by red lozenges in U ′.
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The octahedron recurrence

Definition
The weight wΞ = wΞ(k̃) of such a tiling is defined to be the
sum of the weights of all the lozenges � and triangles ∆ in
the tiling, as well as the weight of the entire hexagon 7v :

wΞ :=
∑
�∈Ξ

wt(�) +
∑
∆∈Ξ

wt(∆) + wt(7v ). (12)

Note that the wΞ depend linearly on k̃ , and hence on k , k ′.
We then define

h̃(v) := max
Ξ tiles 7v

wΞ
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Figure: The two lozenge tilings of 7(1,n−1). The weight coefficients
of the lozenges, border triangles, and hexagon are marked with +
(for a weight of +1/3) and − (for a weight of −1/3). The tiling on
the left is the standard one.
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The octahedron recurrence

Example
As a simple example, take v = (1,n − 1) ∈ T (assuming
n ≥ 2), then the excavation hexagon 7v = ABCDEF is given
by the unit hexagon centered at v :

(A,B,C,D,E ,F ) =

((0,n), (0,n − 1), (1,n − 2), (2,n − 2), (2,n − 1), (1,n)).

This hexagon has two lozenge tilings.
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The octahedron recurrence

Example (continued)
For the tiling on the left, the blue lozenge has weight

1
3

(k̃(0,n) + k̃(2,n − 1)− k̃(1,n)− k̃(1,n − 1))

the red lozenge has weight

1
3

(k̃(0,n − 1) + k̃(2,n − 2)− k̃(1,n − 1)− k̃(1,n − 2))

.
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The octahedron recurrence

Example (continued)
The upward triangle has weight 1

3(k̃(2,n − 1)− k̃(1,n − 1))

the downward triangle has weight 1
3(k̃(0,n − 1)− k̃(0,n))

and the hexagon has weight

1
3

(k̃(0,n − 1) + k̃(1,n − 2)− k̃(2,n − 2) + k̃(2,n − 1) + k̃(1,n)

leading to a total weight of
k̃(2,n − 1) + k̃(0,n − 1)− k̃(1,n − 1).

65 / 112



The octahedron recurrence

Example (continued)
The tiling on the right can similarly be computed to have a
total weight of k̃(1, n) + k̃(1, n− 2)− k̃(1, n− 1) leading to the
familiar octahedron relation

h̃(1,n − 1) = max(k̃(2,n − 1) + k̃(0,n − 1),

k̃(1,n) + k̃(1,n − 2))− k̃(1,n − 1).
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The octahedron recurrence

Figure: The standard lozenge tiling of a hexagon ABCDEF
centered at v . The total weight of this tiling is k̃(E) + k̃(B)− k̃(O),
where O is the intersection of the diagonal BE with the equator
AD.
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The octahedron recurrence

Example (continued)
The lozenge tiling in below figure has weight

k̃(4,4) + k̃(3,3)− k̃(4,2)− k̃(2,3) + k̃(1,3)

−k̃(2,2)− k̃(3,1) + k̃(4,0) + k̃(2,1).

Figure: A typical lozenge tiling of 7(3,2), n = 6.
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The octahedron recurrence

Theorem
The construction above agrees with the octahedron recurrence
described by Knutson-Tao-Woodward.

Proof.
This is basically a matter of comparing notations with the
Speyer formula and performing some calculations.
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The octahedron recurrence

As a consequence of this theorem and the results in
Knutson-Tao-Woodward [KTW], the octahedron recurrence
that we have just defined is indeed a volume-preserving
bijection between the polytopes. In [KTW] the stronger
assertion that this recurrence is a bijection between integer
lattice points is established, but the volume-preserving
nature of the bijection then follows by a standard rescaling
and limiting argument to pass from the discrete to the
continuous setting.
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The octahedron recurrence

Lemma (Replacing red lozenges with blue)
Let v be an interior point of {0, . . . ,n}2, and let Ξ be a lozenge
tiling of 7v = ABCDEF . Then one has the identity∑

�∈Ξ, red
wt(�)−

∑
�∈Ξ, blue

wt(�) =

1
3

(−k̃(A) + k̃(B)− k̃(C) + k̃(D)− k̃(E) + k̃(F )).
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The octahedron recurrence

The proof of the main theorem is thus reduced to

Proposition (Reduction to the minor process)
Let σλ, σµ > 0 be fixed, and let A,B with A√

σ2
λn
, B√

σ2
µn

be drawn
independently from the GUE ensemble, and let (g,g′) be the
resulting Gelfand–Tsetlin patterns. Then for any v ∈ T , we have

var max
Ξ tiles 7v

2
∑

�∈Ξ, blue
wt(�) +

∑
�∈Ξ, green

wt(�) +
∑
∆∈Ξ

wt(∆)

+wt′(7v ) = o(n4)

where we identify (g,g′) with a pair of hives (k , k ′) using a large
gaps tuple γ as indicated above.
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Using eigenvalue rigidity to remove edge
contributions

Lemma (Eigenvalue rigidity (Tao-Vu’13))
Let A be a matrix with A/

√
n having the distribution of GUE.

Then for any 1 ≤ i ≤ n we have

P(n−1/3 min(i ,n − i + 1)1/3|λi −
√

nγi | ≥ T )� nO(1)exp(−cT c)

for any T > 0 and some absolute constant c > 0, where the
classical location γi is the value predicted by the semicircular
law: ∫ γi

−∞

1
2π

(4− x2)1/2 dx =
i
n
.

In particular,

λi ,Eλi =
√

nγi + O(n1/3 min(i ,n − i + 1)−1/3 logO(1) n)

with overwhelming probability.
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Using eigenvalue rigidity to remove edge
contributions

We conclude that for any lozenge tiling Ξ of 7v , we have∑
∆∈Ξ

wt(∆) =
∑
∆∈Ξ

Ewt(∆) + O(n4/3 logO(1) n)

with overwhelming probability. The weight wt′(7v ) is a
certain linear combination of the eigenvalues λi , µj with
bounded coefficients. By a preceding lemma, we conclude
that

wt′(7v ) = Ewt′(7v ) + O

(
n∑

i=1

n1/3 min(i ,n − i + 1)−1/3 logO(1) n

)
= Ewt′(7v ) + O(n logO(1) n).

Again, the contribution of the O(n logO(1) n) error is
acceptable, so we may also replace wt′(7v ) by Ewt′(7v ).
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Using eigenvalue rigidity to remove edge
contributions

Let ε > 0 be a small parameter, and let Uε denote the
portion of U that lies at Euclidean distance at least εn from
the boundary of U. Define U ′ε similarly. Using telescoping
sums, we show ∑

�6⊂Uε∪U′ε

|wt(�)| � ε1/3n2

with overwhelming probability, where the sum is over all
blue or green lozenges in U or U ′ that are not contained in
Uε or U ′ε.
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Henceforth we fix ε > 0 and assume n sufficiently large
depending on ε. By the triangle inequality, it thus suffices to
establish the bound

var
∑

�∈Ξ, blue:�⊂U′ε

wt(�) = O(n4−c+o(1)) (13)

and similarly with blue replaced by green, or U ′ε replaced by
Uε, or both.
We focus on establishing (13), as the other three cases are
proven similarly. It suffices to establish the bound

var
∑

(j,k)∈Ω

λj,k+1 − λj,k = O(n4−c+o(1))

whenever Ω is a collection of tuples of integers 1 ≤ j ≤ k ≤ n
with j , k − j ,n − k � εn.
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By the triangle inequality, it suffices to show that

var
∑
j∈Sk

λj,k+1 − λj,k = O(n2−c+o(1))

for each εn� k ≤ n − 1, where Sk is some subset of the bulk
region {1 ≤ j ≤ k : j , k − j � εn}. Since the minor of a GUE
matrix is a rescaled version of a GUE matrix, it suffices to
establish this claim for the case k = n− 1, that is to say (after
adjusting ε slightly) to show that

var XS = O(n2−c+o(1))

for an arbitrary subset S of {2εn ≤ j ≤ (1− 2ε)n}, where XS
denotes the random variable

XS :=
∑
j∈S

λj − λj,n−1.
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It is convenient to exclude a small exceptional set to keep
the eigenvalues λj somewhat under control. From a lemma
of Tao and Vu, we already know that there is a constant C0
such that

|λj − σλγjn1/2| ≤ n1/3 min(j ,n − j + 1)−1/3 logC0 n (14)

for all 1 ≤ j ≤ n with overwhelming probability. From the
Wegner estimate (see Erdős-Schlein-Yau) and enlarging C0 if
needed, we also see that

|λj+1 − λj | ≥ exp(− logC0 n) (15)

with overwhelming probability for all εn ≤ j ≤ (1− ε)n. Thus,
if we let E denote the event that (14), (15) both hold for all
εn ≤ j ≤ (1− ε)n, then E holds with overwhelming
probability; for future reference we also note the constraints
(14), (15) defining E are restricting λ to a certain convex
subset of Spec. It suffices to show that

var(XS|E) = O(n2−c+o(1)).
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We split this by conditioning on the spectrum λ of A. By the
law of total variance (noting that the event E is measurable
with respect to λ), it suffices to establish the bounds

var(E(XS|λ)|E) = O(n2−c+o(1)) (16)

and
E(var(XS|λ)|E) = O(n2−c+o(1)). (17)

To prove (17), we expand out the left-hand side as∑
i,j∈S

E(cov(λi − λi,n−1, λj − λj,n−1|λ)|E)

where we use cov(X ,Y ) := E(XY )− (EX )(EY ) to denote the
covariance between two random variables X ,Y .

79 / 112



We will indicate below how to establish the bound

E(cov(λi − λi,n−1, λj − λj,n−1|λ)|E)� no(1)

(1 + |i − j |)2 (18)

for all 2εn ≤ i , j ≤ (1− 2ε)n, which implies (17).
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Since the event E is restricting λ to a convex set in Rn, so the
probability distribution function of λ is still log-concave after
conditioning to E . Thus Poincaré estimates such as
Proposition 1 become available. As it turns out, a direct
application of this proposition gives unfavorable estimates,
basically because of long-range correlations between λi and
λj make the operator norm of the inertia matrix large, and
also because the known correlation decay estimates are
currently only available in the bulk. To resolve this, we do
not use the standard basis e1, . . . ,en of Rn, but instead the
following basis consisting of three groups:
• The vector e1 + · · ·+ en.
• The vectors ei+1 − ei for i in the bulk region
bulk := {i : εn ≤ i < (1− ε)n}.
• The vectors ei+1 − ei for i in the edge region
edge := {i : 1 ≤ i < εn or (1− ε)n ≤ i < n}.
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The point is that E(XS|λ) has different behavior in each of
the three groups of vectors. In the direction e1 + · · ·+ en, the
function E(XS|λ) is in fact constant. This is because once one
conditions on λ, the random variable λj,n−1 has the
distribution of the j th largest eigenvalue of the top left
n − 1× n − 1 minor of a Hermitian matrix chosen uniformly
at random amongst all matrices with eigenvalue λ. Moving λ
in the direction e1 + · · ·+ en then amounts to shifting λj and
λj,n−1 by the same constant, so the expectation E(XS|λ)
remains unchanged.
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As it turns out, E(XS|λ) is significantly more sensitive to the
bulk eigenvalue gaps λi+1 − λi than the edge eigenvalue
gaps λj+1 − λj . To exploit this, we apply the weighted
log-concave Poincaré inequality with suitable choices of
weights (sending the weight on the basis vector e1 + · · ·+ en
to infinity) to conclude that

var(E(XS|λ)|E)� E
(
|∇bulkE(XS|λ)|2 + n|∇edgeE(XS|λ)|2|E

)
×
(
‖Mbulk‖op + n−1‖Medge‖op

)
log n

(19)

where for Ω = bulk,edge one has

|∇ΩE(XS|λ)|2 :=
∑
i∈Ω

|(∂λi+1 − ∂λi )E(XS|λ)|2

and MΩ is the covariance matrix with entries

cov(λi+1 − λi , λj+1 − λj |E)

for i , j ∈ Ω.
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To prove (17), it suffices to establish the bound

E
(
|∇bulkE(XS|λ)|2 + n|∇edgeE(XS|λ)|2|E

)
� n1+o(1). (20)

We establish the bound

E(|∂λiE(λj − λj,n−1|λ)|2|E)� no(1)(1 + n|γi − γj |)−4 (21)

whenever 1 ≤ i ≤ n and j ∈ bulk. Taking square roots and
summing over j ∈ S using the triangle inequality, one
obtains

E(|∂λiE(XS|λ)|2|E)� n−2+o(1)

for i ∈ edge, and

E(|∂λiE(XS|λ)|2|E)� no(1)

for i ∈ bulk. Summing in i , one obtains (20) and thus (17).
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Determinantal process calculations

It thus remains to establish the bounds (18), (21). We will
indicate some key ingredients.
We fix λ to be a deterministic element of Spec◦, and let A be
a Hermitian matrix drawn uniformly at random amongst all
matrices with eigenvalues λ. We then let x1 ≥ · · · ≥ xn−1 be
the eigenvalues of the top left n − 1× n − 1 minor of A. In
order to establish (18), (21), we would like to understand the
mean and covariances of the gaps λj − xj , as these random
variables have the same distribution as λj − λj,n−1
conditioned to this choice of λ. As it turns out, the theory of
determinantal processes provide an explicit formula for
these quantities:
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Determinantal process calculations

Proposition (4; First and second moments)

E(λi − xi) =

∫
Ii

Qi(x) dx (22)

for all 1 ≤ i ≤ n and

cov(λi − xi , λj − xj) =

(∫
Ii
(1−Qj(x)) dx

)(∫
Ij

Qi(x) dx

)
(23)

for all 1 ≤ i < j < n, where Ij = Ij,λ is the interval Ij := [λj+1, λj ]
and each Qj = Qj,λ is the unique degree n − 1 polynomial such
that Qj(λi) = 1i≤j for 1 ≤ i ≤ n. More explicitly, by the Lagrange
interpolation formula one has

Qj(x) :=
∑
i≤j

∏
` 6=i(x − λ`)∏
` 6=i(λi − λ`)

. (24)
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Lemma (Contour integral representation)
Let P = Pλ denote the degree n polynomial

P(x) :=
n∏

k=1

(x − λk ).

Then for any 1 ≤ j ≤ n and σ in the interior of Ij , one has

Qj(x) = − 1
2πi

∫ σ+i∞

σ−i∞

P(x)

P(z)(x − z)
dz

for x < σ and

1−Qj(x) =
1

2πi

∫ σ+i∞

σ−i∞

P(x)

P(z)(x − z)
dz

for x > σ.
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Proof of the contour integral representation lemma:

Proof.
Observe that the rational function Qj(x)/P(x) decays at
infinity and has poles at λi , i ≤ j with residues 1/P ′(λi), thus
we have the partial fractions decomposition

Qj(x)

P(x)
=
∑
i≤j

1
P ′(λi)(x − λi)

.

Similarly
1−Qj(x)

P(x)
=
∑
i>j

1
P ′(λi)(x − λi)

.

The claim now follows from the residue theorem.
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Open questions
1 What can be said about the concentration of random

real valued augmented hives with general boundary
conditions? If they do concentrate, what are the
possible subsequential limit shapes? In particular, is the
limit unique? In the limit when one of the boundary
conditions is more spread out than the other, the limit
shape should essentially degenerate to fractional free
convolution powers (See Shlyakhtenko and Tao).

2 Do the local statistics of the random augmented GUE
hive process converge (either in the bulk or the edge) to
a known limit? In the case of the random
Gelfand–Tsetlin process, the limit is known to essentially
be the Boutillier bead process.

3 Do random integer valued augmented hives with
general boundary conditions concentrate? Again, if they
do concentrate, what are the possible subsequential
limit shapes? In particular, is the limit unique?

89 / 112



Thank you for your
attention!



Proof of Proposition 4:

Each xi lies in Ii , with probability measure

(n − 1)!
Vn−1(x)

Vn(λ1, . . . , λn)
1I1(x1) . . . 1In−1(xn−1)dx1 . . . dxn−1. (25)

As observed by Metcalfe, this law also has a determinantal
form involving the polynomials Qj as follows. From the
fundamental theorem of calculus, the derivatives Q′j are
degree n − 2 polynomials that obey the mean zero
conditions ∫

Ii
Q′j (x)dx = 1i=j (26)

for 1 ≤ i , j ≤ n − 1, and thus form a basis of the polynomials
of degree at most n − 2.

91 / 112



Proof of Proposition 4:

If one introduces the kernel K : R× R→ R by the formula

K (x , y) :=
n−1∑
j=1

1Ij (x)Q′j (y)

then from (26) we conclude that K is a rank n − 1 projection
in the sense that∫

R
K (x , y)K (y , z)dy = K (x , z),

and
∫
R K (y , y)dy = n − 1 for all x , z ∈ R.
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Lemma (Gaudin’s lemma)
Let K : R× R→ R be a (sufficiently nice) function obeying the
idempotent relation

K (x , z) =

∫
R

K (x , y)K (y , z) dy

and the trace formula∫
R

K (x , x) dx = n − 1.

For each k , let ρk be the correlation function

ρk (x1, . . . , xk ) := det(K (xi , xj))1≤i,j≤k .

Then we have∫
R
ρk+1(x1, . . . , xk , xk+1) dxk+1 = (n − k − 1)ρk (x1, . . . , xk ).
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Proof of Proposition 4:

By the Gaudin lemma, we then have∫
Rn−1

det(K (xi , xj))1≤i,j≤n−1dx1 . . . dxn−1 = (n − 1)!.

On the other hand this determinant is symmetric and
supported on the (n − 1)! permutations of I1 × · · · × In−1,
hence ∫

I1×···×In−1

det(K (xi , xj))1≤i,j≤n−1dx1 . . . dxn−1 = 1.

94 / 112



Proof of Proposition 4:

Because Q′1, . . . ,Q
′
n−1 is a basis of the polynomials of degree

n − 2, we see that for (x1, . . . , xn−1) in I1 × · · · × In−1, the
determinant

det(K (xi , xj))1≤i,j≤n−1 = det(Q′i (xj))1≤i,j≤n−1

is a scalar multiple of the Vandermonde determinant, while
also having a total mass 1; comparing this with the
probability measure (25), we see that this measure has the
determinantal form

det(K (xi , xj))1≤i,j≤n−1 dx1 . . . dxn−1.
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Proof of Proposition 4:

In particular (by another application of the Gaudin lemma)
the one-point correlation function is K (x , x) and the two
point correlation function is K (x , x)K (y , y)− K (x , y)K (y , x).
The identity (22) then follows from integration by parts:

Eλi − xi =

∫
Ii
(λi − x)K (x , x) dx

=

∫
Ii
(λi − x)Q′i (x) dx

=

∫
Ii

Qi(x) dx .
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Proof of Proposition 4:

Proof (continued).
A similar computation gives (23): cov(λi − xi , λj − xj)

=

∫
Ii

∫
Ij
(λi − x)(λj − y)(K (x , x)K (y , y)− K (x , y)K (y , x)) dxdy

−
∫

Ii
(λi − x)K (x , x)dx

∫
Ij
(λj − y)K (y , y) dy

= −
∫

I1

∫
Ij
(λi − x)(λj − y)K (x , y)K (y , x) dxdy

= −
∫

Ii

∫
Ij
(λi − x)(λj − y)Q′i (y)Q′j (x) dxdy

=

(∫
Ii
(1−Qj(y))dy

)(∫
Ij

Qi(x) dx

)
. (27)
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Proof:

Now let 1 ≤ i , j ≤ n. Using the identity

P(x)

P(z)(x − z)
=

∏
1≤k≤n:k 6=i

x − λk

z − λk

(
1

z − λi
+

1
x − z

)

we have

∂λi

P(x)

P(z)(x − z)
=

1
(z − λi)2

∏
1≤k≤n:k 6=i

x − λk

z − λk

and so on differentiating under the integral sign we obtain

∂λi Qj(x) = − 1
2πi

∫ σ+i∞

σ−i∞

1
(z − λi)2

∏
1≤k≤n:k 6=i

x − λk

z − λk
dz (28)

whenever σ is in the interior of Ij and x 6= σ.
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Proof:

By continuity the restriction x 6= σ can then be dropped.
Setting x = σ, which implies |z − λk | ≥ |x − λk |, we conclude
from the triangle inequality that

|∂λi Qj(x)| ≤ 1
2π

∫
R

1
|x − λi + it |2

dt =
1

2|x − λi |
. (29)

Further arguments lead to a proof of (18) and (21) by
controlling

E(cov(λi − λi,n−1, λj − λj,n−1|λ)|E),

and
E(|∂λiE(λj − λj,n−1|λ)|2|E).
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We begin with (21). Fix 1 ≤ i ≤ n and j ∈ bulk. By
Proposition 4, the left-hand side of (21)

E(|∂λiE(λj − λj,n−1|λ)|2|E)

is

E

(
|∂λi

∫
Ij,λ

Qj,λ(x) dx |2
∣∣E) .

We divide the interval Ij,λ = [λj+1, λj ] into the left half
I l
j,λ = [λj+1,

λj+1+λj
2 ] and the right half Ir

j,λ = [
λj+1+λj

2 , λj ].

100 / 112



We shall just establish the bound

E

(
|∂λi

∫
Ir
j,λ

Qj,λ(x) dx |2
∣∣E)� no(1)(1 + n|γi − γj |)−4; (30)

similar arguments apply for the left half I l
j,λ, and the claim

(21) will then follow from the triangle inequality.
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The quantity
∫

Ir
j,λ

Qj,λ(x) dx is unchanged if all of the λ are
shifted by the same constant. In particular

n∑
i=1

∂λi

∫
Ir
j,λ

Qj,λ(x) dx = 0.

Thus it will suffice to establish (30) under the additional
hypothesis i 6= j , as the excluded case i = j is then handled
by the triangle inequality. The point of this reduction is that
it generates a separation between λi and Ir

j,λ. (For the left
half I l

j,λ, one would instead enforce the hypothesis i 6= j + 1.)
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Henceforth i 6= j . If i is also not equal to j + 1, we of course
have

∂λi

∫
Ir
j,λ

Qj,λ(x) dx =

∫
Ir
j,λ

∂λi Qj,λ(x) dx .

For i = j + 1, we acquire an additional term of 1
2Qj,λ(

λj+1+λj
2 ).
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Thus, it will suffice to establish the bounds

E

(
|
∫

Ir
j,λ

∂λi Qj,λ(x) dx |2|E

)
� no(1)(1 + n|γi − γj |)−4 (31)

whenever i 6= j , as well as the additional bound

E
(
|Qj,λ

(
λj+1 + λj

2

)
|2
∣∣E)� no(1). (32)
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By (14), Ij,λ is contained in a fixed interval I∗j of length no(1)

centered around σλ
√

nγj , thus by Cauchy–Schwarz∣∣∣∣∣
∫

Ir
j,λ

∂λi Qj,λ(x) dx

∣∣∣∣∣
2

� no(1)

∫
I∗j

|∂λi Qj,λ(x)|21x∈Ir
j,λ

dx .
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By the triangle inequality, (31) will then follow from the
pointwise bound

E
(
|∂λi Qj,λ(x)|21x∈Ir

j,λ

∣∣E)� no(1)(1 + n|γi − γj |)−4 (33)

for each x ∈ I∗j .
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First consider the case where |i − j | ≥ log2C0 n. Applying (28)
with σ = x and the triangle inequality, we have

∂λi Qj(x)�
∫
R

1
(x − λi)2

∏
1≤k≤n:k 6=i

|x − λk |
|x − λk + it |

dt .

From (14), we can compute |x − λi | = no(1)(1 + n|γi − γj |) and∏
1≤k≤n:k 6=i

|x−λk |
|x−λk +it | �

no(1)

1+t2 , and (33) follows in this case.
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Now suppose |i − j | < log2C0 n, so that the right-hand side of
(33) simplifies to no(1). By (29), we can bound

|∂λi Qj,λ(x)|21x∈Ir
j,λ
� 1

λj − λj+1
+

1
λj−1 − λj

(by splitting into the cases i < j and i > j). Thus it will suffice
to establish the bound

E
(

1
(λj − λj+1)2 |E

)
� no(1)

(the claim for 1
λj−1−λj

is of course similar).
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Letting K (x , y) be the determinantal kernel of the rescaled
GUE matrix A it suffices to show that∫

I∗j

∫
I∗j

K (x , x)K (y , y)− K (x , y)K (y , x)

|x − y |2
dxdy � no(1).

But from existing results on the local smooth convergence
of this kernel to a rescaled Dyson sine process, the claim
follows. This proves (33).
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Finally, we need to show (32). Write x =
λj+1+λj

2 . By the
contour integral representation lemma and the Plemelj
formula, we can write

Qj,λ(x) =
1
2
− 1

2π
p.v.

∫
R

P(x)

P(x + it)
dt
t
.

Using (14), (15) (which among other things makes
P(x)/P(x + it) very close to 1 for |t | ≤ exp(− log2C0 n),
bounded in magnitude by 1 for all t , and decaying fast for
|t | ≥ nC0 (say)), one can calculate that this integral is O(no(1)),
giving (32). This completes the proof of (21).
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Now we show (18). Let 2εn ≤ i , j ≤ (1−2ε)n. If |i − j | ≤ log2C0 n
then the claim follows from the crude bounds

λi − λi,n−1, λj − λj,n−1 = O(no(1))

from interlacing and (14), so we may assume by symmetry
that j − i > log2C0 n. Applying (23), it suffices to show the
pointwise bound∫

Ij

∫
Ii
(1−Qj(x))Qi(y) dxdy � no(1)

(j − i)2 .

Applying Lemma 19, we can write the left-hand side as

1
4π2

∫
Ij

∫
Ii

∫ x+i∞

x−i∞

∫ y+i∞

y−i∞

P(x)P(y)

P(w)P(z)(y − z)(x − w)
dwdzdxdy .

From the separation of i , j , we have the lower bounds

|y − z|, |x − w | � j − i .
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The quantity |P(x)|/|P(z)| is bounded by 1, and from (14) it is
also bounded by O(no(1)/|Imz|2) when Imz ≥ log2C0 n.
Similarly for |P(y)|/|P(w)|. Also, from (14) the intervals Ii , Ij
have length O(no(1)), and the claim follows.
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