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Non-normal operators

Normal operator/matrix: NN* = N*N;
Non-normal: NN* # N*N.

Examples of non-normal operators/matrices:
m Kramers-Fokker-Planck type operators
PDE solvability theory
Damped wave equations
Open quantum systems

|
|
|
m Scattering theory - long term behavior of a quantum particle
m Linearized operators from models in fluid dynamics

[

Evolution driven by non-normal operators
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Spectral instability of non-normal operators

For any bounded normal operator N

1
dist(z, Spec(N))’

(N = 2)"" = z ¢ Spec(N).
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Spectral instability of non-normal operators

For a non-normal operator N and z ¢ Spec(NN) one has
either

1
N —2)7 Y=
IV = =)= G5t Spect))
(zone of spectral stability)
or )
(N = 2)7H >

dist(z, Spec(N))’

(zone of spectral instability)
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Spectral instability of non-normal operators

Example: Left shift operator on C / Jordan block

01
0 1
Jy = , Spec(Jy) = {0}.
N 0 1 pec(Jn) = {0}
0 1
0

Zone of spectral instability: For z € D(0,1) :={w € C : |w| < 1}

(TN = 2)vllo= [ =[|(In = 2)7H|= 27

vi=(1 2z 2* -+ ZN’l)T = ||v]|2x 1.

Zone of spectral stability: For z € C\D(0,1).
1Ty = 2) =< 1.
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Spectral instability of non-normal operators

IN—2 =

—z 1
—z

Zone of spectral instability: For z € D(0,1) :={w € C : |w| < 1}

I(In — 2)vlle= |21 =[(Jn —2) 7= |27
V= (1 z 22 ... ZN*l)T = [v]l2=< 1.

Zone of spectral stability: For z € C\D(0, 1).

1Ty = 2) 7= 1.
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Challenges with non-normal matrices

(i) The eigenvalue analysis in many applications turns out to be
misleading.

(i) The eigenvalues are sensitive to perturbations and thereby
often yielding unreliable results.
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Challenges with non-normal matrices

Example 1. Set fa(t) := |[exp(tA)|, f(t) := | exp(tB)||, t >0
(|l - || denotes the operator norm),

-1 1 -1 5
(3 ) mene (2 0).

e For large t's the slopes of the curves are determined via an
eigenvalue analysis.
e Slopes for t =< 17
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Challenges with non-normal matrices

1 2 3 4

e The ‘hump’-like structure of the curve {f5(t)}+>0 cannot be
explained solely by the eigenvalues of B.
e Such hump-like structure are ubiquitous in dynamical systems,
commonly known as the transient behaviors.

(Example taken from the book by Trefethen and Embree)
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Challenges with non-normal matrices

Example 2. Simulate a uniformly random _unitary matrix Uy and
set Jy = UnJNUS. Spec(Jy) = Spec(Jy) = {0}.

1op "

JN =

O =

S =

Figure: N = 1000. Eigenvalues of TN computed through Mathematica are
plotted in blue and the unit circle S* on the complex plane is in black.
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Challenges with non-normal matrices

Example 3. Simulate a Haar Uy. Compute the eigenvalues of
UvHnUy. N = 1000.

.
A
HN = JN"‘DN
ol
Dy = diag({d;}\,)
di= 91X 19 N N
] = — —., 1 =
1 N’ ) ) ) oy ‘ ‘ ‘ ‘ ‘
-3 -2 -1 0 1 2

Twisted Toeplitz / Toeplitz with variable coefficients
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Challenges with non-normal matrices

Example 4. Simulate a Haar Uy. Compute the eigenvalues of
UnvHNUR,. N =1000.

2 [T Iu|
1 [ |

Dy = diag({X;}Y¥))
{X;} i.id. Unif[-2,2] -1} 1
72 i | | | in|

-2 -1 0 1 2

Non-periodic one-way model — “limit” of Hatano-Nelson model
(due to Brézin, Feinberg, and Zee)

Eigenvalues move to the ‘Hatano-Nelson bubble’
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Challenges with non-normal matrices

Remark. Recall Hy = Jy + Dy and Hy = Jy + Dy, with
. 4i
Dy = diag({d;}), di:—2+N,z:1,2,...,N,
N i=diag({X;}),  {Xi}iid. Unif[-2,2].

Hence

N N
1
NZ6>\i(HN):>Unif[—2,2], and Z 7y = Unif[-2,2].
=1 =1

However, simulated spectrums of Uy HyxUjy; and UNI:TNUX, are
completely different.
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Pseudospectrum

e-pseudospectrum (& > 0)
(1). Spec,(A) := Spec(A) U {z € C\Spec(4) :||(4 — 2) = 7'}

(2).Spec.(A) = | J Spec(A+ E)

IEll<e

(3). 2z € Spec.(A) & z € Spec(A) or Ju, s.t. |[(A—2)v,||< € ||v]]

(1) & (2) & (3)

[Varah '79], [Trefethen, Embree '05]
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Pseudospectrum

For any A € CV*N and any € > 0
Spec,(A) D Spec(A) + D(0,¢).
If || -] =12 and A € C¥XN then
A normal < Spec,(A) = Spec(A) + D(0,¢) Ve > 0.
More generally, if A =V AV~! is diagonalizable then

Smax(V)

Spec,(A) C Spec(A) + D(0,ex(V)), r&(V):= (V)
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Pseudospectrum

Example 2 (revisited): For any § = dn > 0 let

[0 1

0 1
0 1
) 0]

Observe: Eigenvalues of JJ(\?) = {§V/N2mk/N | c [0,N — 1] N Z}.
Therefore
m If 6 = |z|V for some z € D(0, 1) then an exponentially small
perturbation of Jy produces eigenvalues that are at a
distance |z| from Spec(Jn). Thus Spec,~(Jy) D D(0,r) for
any r € (0,1).
milfd=<1orif§ =0O(N"?) for any a > 0 then eigenvalues of
J](\(;) approaches S! := 9D(0,1).
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Pseudospectrum

Example 2 (continued):

Figure: N =50, ¢ = 107,10712,...,1072. Pseudospectral level lines:
Jn on the left panel, Cy := ](Vl) on the right panel.
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Pseudospectrum

Examples 3 and 4 (revisited):

-2+ 4 1

-2+ % 1
Hy =

{X;} are i.i.d. Unif[-2,2].
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Pseudospectrum

Examples 3 and 4 (revisited):

Figure: N =100, e = 1072,1024,...,10~**. Pseudospectral level
lines: Hy on the left panel, Hy on the right panel.
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Pseudospectrum

Example 1 (revisited):
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Pseudospectrum

Example 1 (revisited):

Figure: ¢ = 10792,10794,...,107 12, Pseudospectral level lines: A on
the left panel, B on the right panel.

Real life implications: Onset of turbulence in the plane Couette
flow at a high Reynolds number.

Spectrum of the Navier-Stokes evolution operator linearized about the laminar flow contained in the left half of the
plane. For a sufficiently large Reynolds number and a small € > 0 its e-pseudospectrum protrudes a distance
‘much’ greater than £ into the right half plane, and as a result certain perturbations of the plane Couette flow grow

transiently at that high Reynolds number eventually decaying due to viscosity.
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Move from pseudospectrum to random perturbation

m Pseudospectra are generally harder to characterize and
computationally more expensive.

m Random perturbation is an efficient model.

m The pseudospectrum measures how much one can move the
spectrum by a worst-case perturbation.

m In many physical models the perturbation of an operator is
generally induced by sources that are primarily uncontrolled by
experimentalists.

m Natural to study spectral features of disordered perturbations
of a non-normal operators/matrices, e.g. open quantum
systems.

m If the simulated Uy = Uy + Ay, where Uy is a ‘true’ unitary
and Ay captures the machine/rounding error then the

spectrum of AN = UnAnUj is same as that of Ay + AN
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Random perturbations of non-normal matrices

dy

Example. For a(§) :=>"0F , ;&' with £ € S!, set

Tn(a) =Y aiJiy+ Y ai(J{)"

120 1<0

For a(§) = 2673 — €72 4 20671 — 4¢ — 2,2

0 —4 -2

2c 0 —4 -2

-1 22 0 -4 -2

2 -1 2 0 —4 =2

TN(a) =
0 —4 -2
2 -1 2 0o -4
I 2 -1 2¢ 0
A. Basak Spectral features of non-normal matrices

6/25



Random perturbations of non-normal matrices

Figure: N =1000. Eigenvalues of Uy ANnUpR, Un a simulated Haar
unitary, computed through Mathematica are in blue. Eigenvalues of

An + N72Gy are in red, where Gy is the random matrix with

i.i.d. standard complex Gaussian entries. Left panel: Ay = Jy, and right
panel: Ay = Tx(a). Symbol curves S! (left panel) and a(S!) (right
panel) in
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Random perturbations of non-normal matrices

Examples 3 and 4 (revsiting again).

Figure: N = 2000. Eigenvalues of UyANUjR,, Un a simulated Haar
unitary, computed through Mathematica are in blue. Eigenvalues of
Ay + N3Gy are in red, where Gy is the random matrix with
i.i.d. standard complex Gaussian entries. Left panel: Ay = Hy, and
right panel: Ay = Hy. .
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Questions

Setup:
e Ay an N x N non-normal matrix.
e Ey is a random matrix with entries that are of O(1).

(e.g. i.i.d. Gaussian entries)
e Consider Ay + N"7Ey for v > 1/2.
Observe v > 1/2 is necessary. Since || Ex||x N/2.
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Questions

m Limit of the bulk of the eigenvalues. How does it depend on
“limy oo AN"7? Universal w.r.t. to the distribution of En?

Wor.t. y?
1 N
LN = N Z;(S)\Z
1=

m Are there outliers?
stray eigenvalues away from the support of the limiting measure
If so, what is the limit (of the random point process)?
Universal /non-universal?
m How do eigenvectors look like? Localization/delocalization?
Quantum unique ergodicity?
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Random perturbations of non-self-adjoint operators

m Non-self-adjoint (semiclassical) pseudodifferential operators
m probabilistic Weyl law
[Hager '06], [Hager, Sjdstrand '08], [Sjostrand '08, '09]
[Bordeaux, Montrieux '08]
m local eigenvalue statistics
[Nonenmacher, Vogel '17]
m Twisted Toeplitz matrices/Berezin-Toeplitz quantization of
smooth functions on torus
[Christiansen, Zworski '10], [B., Paquette, Zeitouni '19]
[Vogel '20]

m Random bi-diagonal matrix/one-way model
[B., Paquette, Zeitouni '19]
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Random perturbations of non-self-adjoint operators

m Non-self-adjoint Toeplitz matrices
m probabilistic Weyl law/asymptotic eigenvalue density
[Hager, Davies '09], [Guionnet, Wood, Zeitouni '14]
[B., Paquette, Zeitouni '19, '20], [Sjdstrand, Vogel '21a, '21b]
[O'Rourke, Wood '22]
m rate of convergence, local law
[O'Rourke, Wood '22]
m limit of point process induced by outlier eigenvalues
[Sjostrand, Vogel '17a, '17b], [B., Zeitouni '20]
m localization/scarring of eigenvectors
[B., Vogel, Zeitouni '23]
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Spectrum of random perturbation of Toeplitz matrices

B a‘O a’l a2 o .. .. aN—l_
a_—1 ag al
a_o a_q . . .
Tn(a) = _ ot , a; € C.
: . .. .. ay as
a_q ag aq
_a—(N—l) e o G-2 a1 agp |
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Spectrum of random perturbation of Toeplitz matrices

ao a’l a2 .. e a’N*l
a—1 ay a1
a_o a_q . T .
TN(G,) = ) _ _ _ , G € C.
. - . . aq as
a_—1 ag al
_a—(Nfl) U o -2 G- ag |

Tn(a) finitely banded if a; =0 for i > dy +1and i < —(d2 + 1)
for some dq,ds > 0.
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Spectrum of random perturbation of Toeplitz matrices

B ao a’l a2 .. ... aN—l
a_—1 ag al
a—o a—i
Tn(a) = _
ai a2
a—1 ao al
—a‘—(N—l) o “ . a_z a_l ao

, a; € C.

» Tn(a) can be viewed as a finite dimensional version of an

infinite dimensional matrix/operator T'(a).

Tn(a) = 1 nyjwT (@)1 NN
» The symbol of T'(a)/ Tn(a) is a.

o

a(€):= > at",  tesh

k=—00
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Spectrum of random perturbation of Toeplitz matrices

» If T'(a) (or equivalently Tv(a)) if finitely banded then a is a
Laurent polynomial.

dy
a@) = Y .
k=—d2
Examples.
m Ty(a) =Jy & a(f) =&
m Ty(a)=Jy+ J3 & al) =&+ &2
m Ty(a) =2(J3%)* — (J3)* + 2y — 4N — 2% & a(é) =

2673 — €72 1 2067 — 48 — 2062,
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Limit of the bulk of the spectrum

Theorem (B., Paquette, Zeitouni '19, '20)

For any v > % if Ei satisfies Assumption (A) then the empirical
distribution of the eigenvalues of Ty + N~ 7 Ex converges weakly,
in probability, to the law of a(U) where U ~ Unif(S!).

(also follows from [O'Rourke, Wood '22])
For any f € C3(C)

! A Lo 9y)do i babili
§ 2SO0 5= [ tateas,in probabily.
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Limit of the bulk of the spectrum

Theorem (B., Paquette, Zeitouni '19, '20)

For any ~ > % if En satisfies Assumption (A) then the empirical
distribution of the eigenvalues of Ty + N~ 7 Ex converges weakly,
in probability, to the law of a(U) where U ~ Unif(S!).

Examples.
Tn = Jn, a(§) = €. Ly = law of U, where U ~ Unif(S!).

Tn=Jy+J% a(§) =&+ &% Ly = law of U + U2,
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Limit of the bulk of the spectrum

Theorem (B., Paquette, Zeitouni '19, '20)

For any v > % if En satisfies Assumption (A) then the empirical
distribution of the eigenvalues of Ty + N~ 7 Ex converges weakly,
in probability, to the law of a(U) where U ~ Unif(S!).

A(\is)umption (A)

E|IBnlEs] =E |3 leis?| = O(N?).
1,J

(2) (Technical condition) For every a > 0 35 € (0, 00), such that
for any My with |[My|| = O(N?),

P (smin(MN + En) < N—ﬂ> = o(1).

v
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Matrices satisfying Assumption (A)

m The entries of E are i.i.d. with finite second moment.
follows from [Tao-Vu '08]
m Fy = VvV NUy, where Uy is Haar Unitary.
follows from [Rudelson-Vershynin '14]
m The entries of Fy are independent, satisfy a uniform
anti-concentration bound near zero, and have uniform lower
bound on the truncated variance.
[Bordenave-Chafai '12]

m The entries of Fy have an inhomogeneous variance profile
satisfying some appropriate assumptions.
[Cook '16]

m Fy can also be sparse random matrix.

[Tao-Vu '08]
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Regions of no outliers

Theorem (B., Zeitouni '20)

The entries of 'y are independent entries with zero mean and unit
variance. Then for any v > % with probability — 1, there are no
outliers in any open set

UGS Ro:={z€C\a(S") : windg(z) = 0}.
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Limit of outliers

Theorem (B., Zeitouni '20)

Additionally assume that En be a random matrix with i.i.d. entries
having zero mean and unit variance and satisfying some
anti-concentration bound (e.g. bounded density). Then for any
5> % the point processes induced by the outlier eigenvalues
converge to the zero set of some non-universal (w.r.t. the
distribution of the entries of E ) random analytic function.

Definition of the limiting random analytic function involves skew semistandard
Young Tableaux
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Limit of outliers: Jordan block

Tx = Jy, entries of E'yy are standard complex Gaussian
Limiting random analytic function is a hyperbolic Gaussian analytic
function:

F(z)= Zggzzvﬁ +1
=0

{g¢} i.i.d. standard complex Gaussian
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Limit of outliers: The Limacon

Ty = Jn + JJZV, entries of Ey are standard complex Gaussian

-1.0 -05 0.0 05 1.0 15 2.0

Figure: Three regions: R in black, Ry in grey, and 7 in white. For
z € Ry (i) wind(z) = £ and (ii) ¢ roots of the equation
a.(§) =&+ €% — 2 =0 that are less than one in moduli.
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Limit of outliers: The Limacon

T = Jn + JJQV, entries of Ey are standard complex Gaussian

For z € R, the limiting random function is given by
F(z) = gt () VT T
=0

{g¢} i.i.d. complex standard Gaussian

&+ (z) are the roots a¢(z) = 0 with |€_(2)| < |€4(2)]

For z € R4, the limiting random function is given by

F(z)= > Cijre(2) - (9:k050 — 9i0958)
1<j,k<t

{ge,¢} i.i.d. complex standard Gaussian
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Localization/delocalization of eigenvectors

Figure: Moduli of the entries of an eigenvector of Jy + N~ YExn: N = 1000; top
left: v =2, top right: v = 1.5, bottom: v = 1.
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Localization/delocalization of eigenvectors

Figure: Moduli of the entries of an eigenvector of Jy + N~YExn: N = 1000; top
left: v=0.9, top right: v = 0.75, bottom: v = 0.4.
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Localization of eigenvectors for v > 1

500 1000 1500 2000 2500 3000 3500 4000 En

Figure: Eigenvectors (left panel) and eigenvalues (right panel) of
JN + JJQ\, + N™7YEpN for N = 4000, v = 1.2. Plotted are the moduli of the entries of
the eigenvector that corresponds to the eigenvalue marked with a red x.
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Localization of eigenvectors for v > 1

0 500 1000 1500 2000 2500 3000 3500 4000

Figure: Eigenvectors (left panel) and eigenvalues (right panel) of
JN + JJQ\, + N~7Epn for N = 4000, v = 1.2. Plotted are the moduli of the entries of

the eigenvector that corresponds to the eigenvalue marked with a red Xx.
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Localization of eigenvectors for v > 1

Theorem (B., Vogel, Zeitouni '23)

For most (right)-eigenvectors v, with probability — 1, as N — oo,
(under some assumptions on Ey; ) the followings hold:

m Localization at scale N/log N: For any £ € [l, N|NZ

ollezqn—ay A lvllegeny S exp(—cllog N/N) + N~
m Eigenvectors spread out at scale N/log N:
[Supp(v)| 2 N/log N

[Supp(v)| := min{|1] :[[v|[ep)Z 1}
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Delocalization of eigenvectors for v < 1

We expect a long-range correlation and some form of quantum
unique ergodicity.
Work in progress with Vogel and Zeitouni.

500 1000 1500 2000 2500 3000 3500 4000 1 05 0 05 1 15 2

Figure: Ty = Jy + J3, N = 4000, v = 0.8.
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Proof ideas for the LSD: Use of log-potential

For a probability measure p on C, such that log(-) integrates near
infinity, define its log-potential as follows:

L,(z) = /log |z — z|du(x), z e C.

Facts:

mIf £,(2) = L,(2) for Lebesgue a.e. z € C then = v.

m If {un} is a tight sequence of (random) probability measures
such that £, (2) = L£,(), for Lebesgue a.e. z € C, in
probability, for some probability measure p € C, then
wN = p, in probability.

/fd,uN — /f du, as N — oo, in probability, f € C(C).
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Proof ideas for the LSD: Use of log-potential

Facts:

N
1
Lra(e) = D loglz — Ai(An)|
i=1

jif —

Z Oxi(An)-

N
1
= — > log | Ai(Ay — 2ldy))|
=1
N
H)\Z(AN — ZIdN)

=1

—110

1
=N log | det(Anx — zIdn)].

A. Basak
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Proof ideas for the LSD: Use of log-potential

For a probability measure i on C, such that log(-) integrates near
infinity, define its log-potential as follows:

Lolz)) i= /log |z — z|du(x), z € C.

Facts:

m If £,(2) = L,(2) for Lebesgue a.e. z € C then = v.

m If {un} is a tight sequence of (random) probability measures
such that £, (2) = L, (2), for Lebesgue a.e. z € C, in
probability, for some probability measure p € C, then
uN = p, in probability.

1
ELﬁ(z) = Nlog | det(An — 2Idw)|.

v
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Proof ideas (continued)

Identify the log-potential of the limit: L (2)
» Recall

dy
a€) = Y ak’.
{=—d3

» Fix z € C. Let &(2),...,&a(2) be the roots of the polynomial
(a(§) —2)- €% Here d :=d; + do.
» Therefore

d

(@(§) —2)- 2 =ag, - [](€ = &(2)).

(=1
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Proof ideas (continued)

Identify the log-potential of the limit: L1 (2)
Law)(2) = [ Tozlal) = =4de = [ 1oz (a(e) —2) ¢ jde

d
=log |aq, | + log € — &(2)[d€

d

= loglag,| + ) log, [€(2)|-

(=1

» The form of the limit depends on the number of the roots that
are greater than one in moduli.
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Proof ideas for the LSD: The limacon

Back to the example: a(&) = ¢ + £2.

L L L L L L L
-1.0 -0.5 0.0 0.5 1.0 15 2.0

Figure: Three regions: Rs in black, R in grey, and 72 in white. For
z € Ry (i) wind(z) = £ and (ii) ¢ roots of the equation
a.(§) =&+ €% — 2 =0 that are less than one in moduli.
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Proof ideas (contd.)

Need to show

1
lim —1 ITn + N "Ey — 21
Jim - log|det(Ty + N — 2ldy)]

0 if z € Ra,
= log|&i(2)] if 2 € Ry,
log |&1(2)| +1og [&2(2)| if z € Ro.

[€2(2)] < 1€ ()]
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Proof ideas (contd.)

Need to show

1
lim — 1 T N "Eyx — 21
Jim og | det(Tn + N — zldy)|

0 if z € Ro,
= log|&i(2)] if 2 € Ry,
log |&1(2)| +1og [&2(2)] if 2z € Ro.

Idea: Expand the determinant

det(TN +N7Eyx — ZIdN)

= 3 (&) det((Tw — #1dw)[X; Y]) - det(N "V Ex[X% V)

X,YC[N]
| X|=[Y]
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Proof ideas (contd.)

Need to show

1
lim — 1 T N "Eyx — 21
Jim og | det(Tn + N — zldy)|

0 if z € Ro,
= log|&i(2)] if 2 € Ry,
log |&1(2)| +1og [&2(2)] if 2z € Ro.

Idea: Expand the determinant and find the dominant term

det(TN +N7Eyx — ZIdN)

= Y (&) det((Ty — 2Idn)[X; Y]) - det(N T Ex[X Y

X,YC[N]
| X|=[Y]
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Dominant term: test cases

Need to show

1
N log | det(Tn+N""Exn—2zIdn)| — log [€1(2)|+log [€2(2)|, 2z € Ro

— log |det

= log |z| = log[€1(2)| + log [€2(2)]-
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Dominant term: test cases

Need to show

1
Nlog|det(TN+N_7EN—zIdN)| —0, z€Ry

—z 1 1
0 —z 1 1
: 0
1 . . . . .
Nlog det : : —— . =0.
—z 1 1
0 0 0 —z 1
| 0 0 e 00—z
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Dominant term: test cases

Need to show

1
N log |det(Tn + N 7En — 2Idn)| — log |61(2)], z€ Ry

det

A. Basak

Spectral features of non-normal matrices

= log [€1(2)]
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Proof ideas (contd.)

Formally

det(TN + NTTEn — ZIdN)
= Y (&) det((Ty — 21dy)[X;Y]) - det(N T En[X% Y7)

X,YC[N]
|X[=IY]

N
k=0

where Py (z) is the homogeneous polynomial of degree k in
the expansion of the determinant in the entries of Ejy.
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Proof ideas (contd.)

Formally
mForzeR;,i=0,1,2

> Pu(z) = o(Pi(2)). (a)
ki

and
Pi(z) < log [§1(2)] + logy [€2(2)]- (b)
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Proof ideas (contd.)

m To prove (a) compute high moments.

m To prove (b) one needs certain anti-concentration bounds.
m Assume the entries of E satisfy required anti-concentration
bounds. Prove the convergence of the log-potentials.
m Show separately that the specific distribution of the entries of
En do not affect the limiting spectral distribution
(replacement principle).
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Thank you!
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