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What is universality?

• The large scale behaviour of certain systems are same even though
microscopic details differ.

For a sequence of independent and identically distributed random
variables X1, X2, . . . , with mean µ finite variance σ2∑n

i=1Xi − nµ√
nσ

⇒ N(0, 1).

Central limit theorem

• More sophisticated: Donsker’s invariance principle.

• Can be thought of as a one dimensional growth model.

• Many other examples: random matrices etc., not everything is
Gaussian.
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A different universal behaviour for planar random
growth

• LPP models do not exhibit Gaussian fluctuations.

• Their large scale behaviours are still expected to be universal, but
now in a different universality class.
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The Kardar-Parisi-Zhang (KPZ) Universality Class

Mehran Kardar Georgio Parisi Yi-Cheng Zhang
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The KPZ equation and the universality class
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A model is proposed for the evolutior. of the profile of a growing interface. The deterministic
growth is solved exactly, and exhibits nontrivial relaxation patterns. The stochastic version is stud-
ied by dynamic renormalization-group techniques and by mappings to Burgers's equation and to a
random directed-polymer problem. The exact dynamic scaling form obtained for a one-dimensional
interface is in excellent agreement with previous numerical simulations. Predictions are made for
more dimensions.
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Many challenging problems are associated with
growth patterns in clusters' and solidification fronts. '
Several models have been proposed recently to
describe the growth of smoke and colloid aggregates,
flame fronts, tumors, etc. ' It is generally recognized
that the growth process occurs mainly at an "active"
zone on the surface of the cluster, with interesting
scaling properties. ' However, a systematic analytic
treatment of the static and dynamic fluctuations of the
growing interface has been lacking so far.
In this paper we propose a model for the time evolu-

tion of the profile of a growing interface, and examine
its properties. Guided by the ideas of universality we
write down the simplest nonlinear, local differential
equation governing the growth of the profile applicable
to such processes as vapor deposition4 or the Eden
model. ' The analysis of this equation is considerably
simplified by mappings to two different, albeit more
familiar, forms. One is the hydrodynamic problem of
the Burgers's equation, and the other is a directed
polymer in a random environment. The deterministic
growth of the profile can in fact be obtained exactly,
and its long-time relaxation behavior exhibits very in-
teresting patterns related to the shock waves in
Burgers's equation. 6 The stochastic growth is treated
by dynamic renormalization-group techniques. For a
one-dimensional interface a fluctuation-dissipation
theorem9 exists, leading to an exact dynamic exponent
z =—,'. This result is in excellent agreement with pre-
vious numerical simulations of ballistic aggregation'
and Eden clusters. " For two-dimensional interfaces,
the mapping to the random directed-polymer problem
is used to make an efficient indirect numerical simula-
tion with the result z —1.5. A nontrivial behavior is
also predicted for the static fluctuations in this case.

The interface profile, suitably coarse-grained, is
described by a height h(x, t). As usual, it is con-
venient to ignore overhangs so that h is a single-valued
function of x. The simplest nonlinear Langevin equa-
tion for a local growth of the profile is given by'2

The first term on the right-hand side describes relaxa-
tion of the interface by a surface tension v. The
second term is the lowest-order nonlinear term that
can appear in the interface growth equation, and is
justified later on with the Eden model as an example.
Edwards and Wilkinson'3 have studied Eq. (1) without
the nonlinear term, but we demonstrate that such a
term is necessary, and responsible for the unusual
properties of the growing interface. Higher-order
terms can also be present, but they are irrelevant, and
will not modify the universal scaling properties. The
noise q(x, t) has a Gaussian distribution with
(7l(x, t)) =0, and
(q(x, t )q(x', t') ) = 2D5~(x —x') 6(t —t'),

although the actual form of the distribution is ir-
relevant. In principle there is also a velocity term,
which is removed by choice of an appropriate moving
coordinate system. Note that Eq. (I) is invariant
under translations h lt +const, and obeys the infini-
tesimal reparametrization

h+a X, X X+Xat,
which describes the tilting of the interface by a small
angle.
To justify the nonlinear term in Eq. (1), consider

the growth of an Eden cluster5 taking place by addition

1986 The American Physical Society

∂

∂t
h(x, t) = ν

∂2

∂x2
h(x, t) + λ(

∂

∂x
h(x, t))2 + ξ(x, t).

Kardar, Parisi, Zhang (1986)

ξ := independent space-time white noise.
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KPZ universality: predicted exponents

A non-rigorous renormalization group analysis suggests

• Scaling exponent of 1/3 for fluctuation.

• Scaling exponent of 2/3 for correlation length.
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The KPZ equation

∂

∂t
h(x, t) =

∂2

∂x2
h(x, t) + (

∂

∂x
h(x, t))2 + ξ(x, t).

• Ill-posed.

• Non-linear term creates the
problem.

• Existence, uniqueness,
regularity theory developed in
Hairer’s Fields medal winning
works.

Martin Hairer

Riddhipratim Basu (ICTS) KPZ Universality 8 / 41



Why do physicists care?

• Models are simple to describe and easy to simulate.

• Nonetheless their large scale behaviours empirically match the
observed behaviour in many naturally occurring systems of
stochastic growth.
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KPZ in real world: examples

1. Mutant bacterial colonies growing in a petri dish.

Image source: Wakita et. al. , J. Phys. Soc. Japan, (1997)
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KPZ in real world: examples

2. Edge of a slowly burning paper.

Image source: Maunuksela et al., Phys. Rev. Lett., (1997)
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KPZ in real world: examples

3. Interface between dynamic scattering modes.

Image: Takeuchi et al., Scientific Reports, (2011)
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KPZ in real world: examples

4. Coffee ring effect with ellipsoidal particles.

Image: Yunker et al., Nature, (2011)
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The Game of Tetris

Image source: https://en.wikipedia.org/wiki/Tetris
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A mathematical formulation

• At each point of time, a random tetromino is chosen.

• It is given a random orientation.

• The tetromino is then dropped at a randomly chosen location.

• The tetromino sticks to the surface.

• No player intervention.
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How does the top envelope look after a long time?

Image source:

https://mathsmartinthomas.files.wordpress.com/2017/08/stickytetris.gif
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How does the top envelope look after a long time?

https://www.ams.org/publications/journals/notices/201603/rnoti-p240.pdf

Questions

• Consider the random interface given by the top envelope at some
large time t.

• At time t, what is the average height of the profile at a given
location?

• What is the order of fluctuation around the average?

• What is the correlation length, i.e., how far you need to move
away in space so that the heights become independent?
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Why do mathematicians care?

• The problems are very hard.

• There are surprising connections to other sub-fields of probability
and many different areas of mathematics in general, leading to
some very interesting mathematics.

• Random matrix theory, interacting particle systems, partial
differential equations, representation theory, algebraic
combinatorics,....
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The KPZ revolution (1999– )

• For a handful of models of last passage percolation, there exist
surprising bijections that lets one map the problem to a different
object.

• Using this one can write down an explicit (but very complicated)
formula for the last passage time for these exactly solvable models.

• Using such a formula the first rigorous proof of the n1/3

fluctuations were given for Possonian last passage percolation by
Baik-Deift-Johasson in 1999.

• Many more examples of exactly solvable models have been found
since then, and tremendous progress in the understanding of their
behaviour.
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The Baik-Deift-Johansson theorem

Ln − 2n

n1/3
⇒ F2.

F2 is the GUE Tracy-Widom distribution from random matrix theory.
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Exponential LPP on Z2

• Put i.i.d. weights Xv ∼ Exp(1)
on each vertex of Z2.

• Connections to Markovian
corner growth, TASEP etc..

• This is an exactly solvable
model.

• T(nx,ny)

n → (
√
x +

√
y)2.

Rost (1981)

X11 X12 X13 X14 · · · · · ·

X21

X31

X41

X22

...

...

X23 · · ·

· · ·

Xij

Xij ∼ i.i.d. Exponential Variables.
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Exponential LPP on Z2

• Using a variant of the Robinson- Schensted- Knuth (RSK)
correspondence, one can explicitly write down a complicated
formula for the distribution of Tn,n. It turns out that the
distribution is the same as the distribution as the largest
eigenvalue of a (complex) Gaussian Wishart matrix.; i.e. X∗X
where X has i.i.d. complex Gaussian entries.

• Using the formula for the joint distribution of eigenvalues of a
Wishart matrix/ a Fredholm determinant formula for the
distribution of the largest eigenvalue, one can get the asymptotics
of Tn,n.
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Exponential LPP: exact formula and estimates

• The joint density of eigenvalues is proportional to∏
i<j

|λi − λj |2
∏
i

λ
(m−n)
i e−λi .

• Using this one can show
T0,n−4n

24/3n1/3 ⇒ FGUE. Johansson (1999)

• Moderate deviations are also known.

C ′e−c′x3/2 ≤ P(Tn ≥ 4n + xn1/3) ≤ Ce−cx3/2
.

C ′e−c′x3 ≤ P(Tn ≤ 4n− xn1/3) ≤ Ce−cx3
.

Ledoux, Rider (2010)

B., Ganguly, Hegde, Krishnapur (2021)

• Much more is known.
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Exactly solvable models
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Mathematical models for the KPZ growth

• There are many mathematical models of one dimensional
randomly growing interfaces that satisfy the four conditions for
the predicted KPZ growth.

• We have not yet managed to rigorously prove the predicted
universal behaviour for a large class of such models.

• There are a few exactly solvable models which have remarkable
connections to other branches of mathematics for which the
predictions have been confirmed.
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Corner Growth Model

x1111 0 0 0 0· · · · · ·

Wedge initial condition
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Corner Growth Model

rate 1

1 0 0 1

Corners are filled at rate 1
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Evolution in Corner Growth Model

x0111 1 0 0 0· · · · · ·

Evolution of height Function
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Evolution in Corner Growth Model

x0111 0 1 0 0· · · · · ·

Evolution of height Function
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Evolution in Corner Growth Model

x1011 0 1 0 0· · · · · ·

Evolution of height Function
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Interface at a large time

h(t, x)
t2/3

t1/3

t
4

A snapshot at large t
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Large t asymptotics

• One point weak convergence:

t−1/3

(
h(t, 0) − t

4

)
⇒ F

as t → ∞ where F is a
non-Gaussian universal
distribution familiar in random
matrix theory.

h(t, x)
t2/3

t1/3

t
4
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Large t asymptotics

• Process convergence:

t−1/3

(
h(t, xt2/3) − t

4

)
⇒ A(x)

as t → ∞ where A(·) is a
stationary stochastic process
on R shifted by a parabola.

h(t, x)
t2/3

t1/3

t
4
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Much more is known

• Different initial conditions.

• Correlations across time.

• Much more...

h(t, x)
t2/3

t1/3

t
4
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What is so special about this model?

• Using a variant of the Robinson- Schensted- Knuth (RSK)
correspondence, one can explicitly write down the density for the
time it takes of the height at a given location to reach a given
value.

• The formula is complicated, but has a surprising connection to
eigenvalues of random matrices.

• Analysis of this (and other similar formulae) gives the one point
and the process convergence results.

Riddhipratim Basu (ICTS) KPZ Universality 35 / 41



Major Challenges: Non-integrable models
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First passage percolation

• Consider the following simple model of bacterial growth on Z2.

• At time 0, the colony consists of only the vertex (0, 0).

• After each unit time, the colony expands by the vertex along a
uniformly chosen boundary edge.

• First passage percolation: put i.i.d. weights on edges and consider
the weight of the minimum weight path between two vertices.

• It is believed that this model belongs to the KPZ universality class.

• It is however not known to be exactly solvable- no exact formula
available.
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First passage percolation
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Much less is known

• Linear growth and law of large
numbers is known (shape
theorem).

• For fluctuations around the
limit shape, one only knows an
upper bound of O(t1/2+o(1)).
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Summary

• There is non-trivial universal behaviour exhibited by many
naturally occurring growing interfaces.

• KPZ universality aims to explain this behaviour.

• The KPZ prediction has been verified for a handful of exactly
solvable models based on some remarkable connections.

• Non-integrable models remain a major mathematical challenge.

• An active area of research and lots of interesting mathematics.
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Thank You

Questions?
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