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Starting with Statistical Decision
Functions

In chapter 2, Wald starts with zero sum two person games. Here mother Nature tries
to hide the true value ot a parameter, though the statistician is allowed

to have a partial peek of the parameter through a random sample © = (z1.25.....2,) of

fixed size n. Statistician has to take a decision d = d(x) as a function of the data x collected

, resulting in a bounded risk (6, d). Wald took the bold view that the Statistical Decision
problem is simply a zero sum two person game between Nature and the statistician. Mother
Nature pegs its choice on a prior probability distribution £ on the parameter space © and

independently statistician pegs his/her choice on a probability distribution 7 over the space

D of all decision functions. The game is played according to these resulting in a the bilinear

functional



Zero sum two person Games

f r(0,d) dédn.
exD

Wald goes through various ways to topologize the two spaces © and D using the bounded
function r(#, d). As one just starting to learn set topology from Professor SRS Varadhan’s

lectures, I was completely lost in Wald’s inteplay with weak topolgy and so on. It was more

to do with zero sum two person games on infinite spaces



Von Neumann-Kaplanski-Blackwell

While one can find the unique value v of an n x n matrix A with strictly positive entries,
(say by the Simplex method) it was not clear as to how this can help to find the unique value

of the spectral radius and the other assertions of the celebrated Perron-Frobenius Theorem.

These theorems of von Neumann, Kaplanski and Blackwell can be summarized as follows:

Minimx Theorem ( von Neumann) Let A = (a;;) be an n X n matrix. Then there exists

Y1, ..., Yn) such

£ ¥

a unique constant v and a pair of probability vectors x = (x1,...,x,) and (

that
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Completely mixed games

Completely mixed games: (Kaplanski) Let A be an n x n payoff matrix with v = 0. If
every optimal strategy (probability vector) for one player is strictly positive, then so it is for
the other player and

1. The optimal probability vectors x,y are unique for the two players

2. Ay=0, Az=0

3. Rank of Aisn — 1

4. All cofactors of A are different from zero and are of the same sign.



PF Theorem via Minimax Theorem

Theorem:(Blackwell) Let A be an n x n matrix with all entries positive. Let v(\) be

the value of the matrix game (A — AI). Then

v(A\) - o0 when A — (—) =+ oc.
v(A) is Lipschitz continuous.

v(A) is strictly decreasing in a neighborhood of Ay when wv(Ag) = 0.

allE - e

The game A — A\yI is completely mixed.

Ao 18 an algebraically and hence a geometrically simple root of the characteristic

oy

equation.

6. Ao 1s the spectral radius.



Spectrum, regular points and spectral radius of bounded

linear oprators

We will always assume E as a Banach space over the real field.

Let ||.|| denote the norm and for any bounded linear operator A we denote by ||A|| the
supy . <1 || Az||.

The spectral radius p of a linear operator A is defined by p = lim,, {/||A"||. We can extend
E to E where for any .,y € F we define z = x + 1y € E and for any complex number
( = a+if we define ACx = aAzx + ifAx. Here ||z|| = maxg<p<r ||xcost + ysinb||
Definition: We call any A € C regular if (A — AI) : E — E : is one-one onto and bicon-

tinuous. The spectrum o(A) is the complement of regular points .

Remark: Unlike in finite dimensions, there may be no characteristic vector for elements
in o(A). A typical example will be the multiplication operator A : E — f(t) — tf(t) in
Cl0 1]



Cones and linear semi groups in real Banach spaces

E' a real Banach space

K C FE is called a linear semi group iff forany A,y > 0 z,y € K = M+ uy € K.
A linear semi group K is called a coneif r € K — 0 — —r ¢ K.

Example 1: £ = C[0 1]. For any f € E we define ||f|| = maxo<i<1 |f(¢)|. Let K be all
polynomials with real coefficients. Here K is a linear semigroup.

Example 2: £ = C[0 1]. Let K be all polynomials with nonnegative coefficients. Here K
is a cone.

Example 3: F = C[0 1]n{f : f(0) > 0}. Let K = all polynomials of the type
Yo o@(—0% @=0 E=0.uf n=12::



On cones with Interior

Given a cone K C E we call A: F — FE a positive operator iff AKX C K. The cone induces
a partial order > on some elements of £F. Wesay x > yiff r —y € K. Let E* be the set of all
bounded linear functionals on E. We denote by K* = {¢ : ¥ € E*, (z) >0 Vz e K}.
We call K a reproducing cone if E = K — K. When the interior of K exists, we denote it

by KV.

Theorem: Given a cone K C with non-null interior, any additive functional 1 satisfying
Y(x) >0 Vxe Kisin K*. That is 9 is a continuous linear functional on E.
Theorem: Let K be a cone with interior and let ¢» € K*. If u € K° with a sphere of radius

p and center u contained in K we have )(u) > pl||¢||



Normal cones

Normal cones

Definition A cone K in FE is called a Normal cone iff there exists a 6 > such that for any
two elements z,y € K with ||z|| = ||ly|]| =1 ||+ y|| > d > 0 where J is independent of
x,y € K. Another equivalent definition is that there exists a é > 0 such that for any two

arbitrary elements z,y € K, ||z + y|| > d{max||z||, ||y||}
Theorem: Let u € K° for a cone K. The cone K is normal if and only if the set

I, = {—u <z < u} is bounded.



Commuting positive Operators with
a common eigenvector

Theorem: Let {A,} ~ €T be a commuting family of bounded linear operators on E and
let A,K' c K Vv & T. Then for some common 1) € K* — f we have Al = A\ b with

Ay > 0,7 € I'. Thus the dual operators all have a common characteristic vector.

Proof: Let u € K° and fix one of the operators say A € T, and let v = Au >> 6. Let
S(u, p) C K = wuzxpe e K when |e|] = 1. For any ¢ € K* we have ¢(u) £ po(e) > 0.
When v = Au we have ¢(v) = ¢(Au) = (A%¢)(u) > ol|d|| for some o > 0.

Consider the compact convex set

H={¢:6c K", ¢(u)=p}



Proof via Markov-Tychonoff Fixed
Point Theorem

H is weakly compact and the map

A*d

Bo=np
" P o)

is a weakly continuous self map of H into itself.
B =

compactness of M;H;



Why for the dual and not for the
original

Example: Let £ = C[0 1]. Let A: E —— E where A sends f(f) — tf(t). Since 0 <t <1
given any g € E we have a solution f to (A — AI)f = g only when A\ &€ [0 1]. Thus
c(A) = [0 1]. The spectral radius of A is 1. If the spectral radius has to possess a
characteristic vector, then we should have (A —7I)f = 6 namely f(t) =¢tf(t) ¥V 0<1t <1.
The only solution is f = 6. Since the cone K of nonnegative functions in C'[0 1] is a normal
cone with interior, we only claim that the spectral radius is a characteristic value for the
dual opertaor A*. Since by Riesz representation theorem, any v € E* is a signed measure

on [0 1] all we demand is to look for a solution to the equation

fn EF () () = f F(H)dw(t) Vf < E.

Clearly the dirac measure 10 = 0, is the required candidate.



Normal cones and spectral radius

Theorem: Let K be a normal cone with interior in £ and let AKX C K. Suppose Au = pu

for some u € K'. Then p is the spectral radius.

Remark: Assumption that K° # 0 is critical. For example let £ = [? and K = {x:z =
{6} : 6, >0 n=1,2.}Nn0

Let A : {&} — {0,{&.}} We observe that the cone has empty interior. Even though
the operator A is linear and maps K into itslf, since K = K* if A%y = A¢ this implies
(A*y x) = (v Ax) Va € 1>. We observe ||Az|| = ||z|| and so the spectral radius of A
is 1. We can write ¢(z) = Z;,-‘ Yjx;. Suppose A*) = ¢ . We get (oxy + Usze +...) =
(127 + Woxe + Y323+ ...) Ve € K. If we take = e, the unit vector, we get 1, = 1);. If
we take x = ey, we get 13 = 1, and so on. Such a 1) vector cannot be an element of [? except

for ©» = #. Thus we see that the spectral radius is not a characteristic number of A*.



Positive operators in reflexive Banach spaces via the

minimax theorem of Ky Fan

Theorem: Let E be a reflexive Banach space and K C E be a closed cone with interior
and let the conjugate cone K* also be one with non-null interior. Let AKY C K° and let

Ax # 0 if t € K — 6. Then there exists a vector u € K — # and ©» € K* — 6 such that
Au=pu, Ay =pyp (p>0).

The spectrum o(A) C {A: |A| < p}

Let K;, Ky be compact convex sets in locally convex linear topological spaces E; and E, respectively

Let L(x,y) be a bileanear functional on K; x K5 such that it is continuous in each variable

max min L(z.vy) = min max L(z.y) = L(2°. 1°
reK ueKs ( EJ) uEKs xe Ky ( ’J) ( Y )



Positive Operators on reflexive
Banach spaces

Theorem: Let K be a closed cone in a reflexive Banach space . Let K, K* have non-
empty interior. Further let A be a strongly positive bounded linear operator. Then

1.  The spectral radius \g is an eigen value of A.

2. There exists an eigen vector z for Ay with z > 6.

3.  The subspace Sy, = {y : Ay = Ay} is one dimensional.

4.  A* has an eigenvector ¢ for Ao which is strictly positive on K* — 6.
5. No other linearly independent eigenvector of A or A* lie in K or K*.

Normal cones and cones with interior play a critical role



Spectral radius iIs outside the
spectrum

Example: Let £ = C[0 1]. Let K= all polynomials Y1 ax(—t)*, ap > 0 k =

0...,n; n=12... generate a dense linear manifold in C'[0 1]. The operator A : f(t) —

—t f(t) maps the cone K into itself. The spectrum is [-1 0] while the spectral radius is 1.

A querry: If the cone K has interior can we say that the spectral radius of any positive

operator is in the spectrum? Not necessarily.

Example: Let E : be all complex valued functions over the real field R and continuous on
the unit disk, real valued on [—1, 1] and regular on {C : || < 1}. One observes that E is
a Banach space. Let K b the cone of nonnegative functions continuous on [-1  — i]. The

function u(¢) =1 V [(] <1 is interior to the cone.

Az f(C) =—(C+3)f(C)



Cone with nonnull interior alone will
not do

spectrum of A intersects the real axis [-1 3]

no positive linear functional as the characteristic vector for the spectral radius

for A* even though the cone has interior points.

Even though the spectral radius is not in the spectrum, Krein’s theorem guarantees A*)

A, A >0 and ¢ € K* is valid and we have in fact A*) = %t/ for ¥(f) = f(—1). Also
Y e K*.



Problems with continuity of
operators

Remark: A linear operator may be continuous on a cone K, but may fail to be continuous
on F even though the cone generates a dense linear manifold in £. Here is one such example.
Let E=C[0 1]Nn{f(0)=0} K ={f:f =0,and convex}

Consider the operator A : f(t) — f(5) 0<t<1

Observe that for any f € K [(({ —A)™NH)fI®) = f@) + f(3)+ f(£)+... is well defined
for 0 < ¢t < 1. Reason: 0 < f(¢t) < f(1) and convexity shows that the series is uniformly
bounded by 2f(1). However it is not so for f € K — K. Cousider f,,(t) = gn(t) — h,(t) where

gu(t) = 27t 0<t<1
ho(t) =0 0<t<2"
— o 1 P N |

et 21 o e 4 1.7 N\OoO rf feoy—FEN o NTTL r ey —RE o



Partial spectral radius

Remark: The above operator A has the following additional properties
1. A is compact in K

2. Ais not compact in E

3. (iii) If S is the unit sphere in F then if p(A) = lim, sup,cxng V A"z then p(A) =

1
2

and Au = %u for some u € K — 6.



Lorentz Bilinear Functional

Let H be a real Hilbert space with the unit vectors e,, n =1,2,.... Let J be an operator
defined by Jxr = z1e1 — Z;}iz zje;. We have J 2 — [ Let us denote the bilinear functional
(JE =8 I=

Let K ={z:(ze;) >20,<x z>>0}

Theorem: If x,y € Kthen <z y> >+ <z z>/<y y>

Definition: We call a map A : H — H a Lorentz map if A is one:one such that

<Az, Ay>= <z, y>Vz,ye H



Lorentz Operators on Lorentz cone

Theorem: If A € o(A) then ; is in 0(A). Also if Ax = Az, Ay = py and if Az # 1 then

<Z, Y>> =0.

Theorem: If xr € K then Ax or —Axz € K. Also if for one zy # 0, if 7 and Az, are both
in K then AK C K. In fact AK = K.

Theorem: Let A be a Lorentz mapping with AK C K. Then A has a characteristic vector

v € K such that
i. p =1 and the whole spectrum of A lies on the unit circle.
ii. p > 1 In this case A has another characteristic vector u € K such that Au = ifu,.

In this second case both v and w belong to the boundary of k.



Compact Operators in Banach spaces

Definition: A bounded linear operator A : £ — E is a compact operator iftf the range of

every bounded set is a conditionally compact set in .

1
A:¢p— / K(s,t)o(t)dt
0
1. 1. K(s,t) is measurable and integrable with respect to t.

2. 2. limy, o fo |K(s+ h,t) — K(s,t)|dt = 0.

maps bounded sets of C[0 1] to conditionally compact sets via Ascoli-Arzela theorem

(equicontiuity property).



Properties of compact operators in real or complex Ba-

nach spaces.

1. The spectrum o(A) of any compact operator in Banach spaces of infinite dimensions will

have a countable number of characteristic values and with 0 as the only limit point.

2. 0(A) C{A: A < p} = limyseo 3/TTA7]

3. In a suitable neighbor hood N(\) of any nonzero eigenvalue Ay the resolvent operator

Ry= (A= )\ ZFM Ao)”

k=—n

Here I';. , for £ < 0 have finite dimensional range as bounded linear operators.



Properties of Compact Operators

4. For each Ay # 0 in the spectrum we have a positive integer p with a p dimensional null
space G, for (A — Agf). We call p the rank when no ¢ < p has this property. We call A

simple when p = 1. In this case we say A is a simple pole of R).
5. A and A* have the same rank for each A € the spectrum.

6. Ao is a simple eigen value iff the eigenvactor Av = \gv,  A*Y = A\t implies ¢ (v) # 0.

7. If A € the spectrum of A , then for any given y € FE, the equation Az — Az = y has a

solution iff v is orthogonal to any eigen vector ¢ € E* for A*.



Compact Positive Operators:

Theorem: Let K be a closed cone with K — K dense in a real Banach space E.

Let A: E — E be a compact operator that leaves the cone K invariant ( AK C K).
Let p > 0 be the spectral radius of A. Then there exists a v € K,v # 6 such that Av = pv.

Also we have a ¥ € K* with A*Y) = pY, ¢ # 6.

A querry: Can we replace K by any closed convex set? Not really.

K={@y:z>0y=1} ,_ |11
0 1

spectral radius which is 1, has  no eigenvector in the convex set.




Operator leaving a convex set

iINv7ariant
Theorem: Let K be a closed convex set with £ as an extreme point. Let K contain spheres

of arbitrary radius. and let the compact operator A with a spectral radius p > 1 leave
the convex set invariant. Then Av = pv for some non-null v € K. Also we have for some
Y€ E*, A% = pyp and ¢¥(x) > 0 for all x € K, # 6.

A querry: Can we replace p > 1 by any p > 0. Not really.

K={(z,y) v >y #0}
0 L.
The spectral radius is

A:

and the eigen vector (0,1) is not in K.

e TSN [
(]|

b | —



Strongly positive Operators

Let K be a cone with interior. A linear operator A is called strongly positive if for every

non-null boundary point = of K we have a suitable power n(z) such that A"z >> 0.

Theorem: Let K be a cone with interior in E Let A be a compact strongly positive operator. Then

(a) The spectral radius p > 0 and Av = pv for a unique v € K ||v|| = 1. Further any

eigenvector in K is just a scalar multiple of v.

(b) The conjugate operator A* has one and only one eigenvector ¢/ in K* (modulo scalar

multiple). We have A*Y) = p1» where 1)(x) > 0 when z € K — 6

(¢) Conversely any compact positive operator is strongly positive when it satisfies (a) and

(b).



Eigenvector solution to Mate
competition game

Krishna chooses a random time to reach Udupi Hotel sometime between 6PM and 7PM. He
will wait for Bhama or Rukmini to show up and will wait for either one till 7TPM. Whom
soever between the two shows up first after his arrival, he will go with her. The successful
mate wins 1 unit from the opponent. Let £ = 0 at 6PM and ¢ = 1 at TPM. Bhama chooses
to show up at £ = x and Rukmini chooses to show up at t = y where 0 < z,y < 1. Expected

payofl to Bhama from Rukmini is given by

Kxy)=z—-(y—x)=2r—-—y <y

|

-y+(z—y)=z—-2y >y



An intuitive probability density we
are lookina for

1
/ K(z,y)f(z)dr =0 Vy € the spectrum of f

1
Integration by parts gives the integral equation / L(z,y) f(z)dx = f(y)

Here I{z.,9) = when = <y

when =y

LN O &=

when x>y



Induced Compact Positive Operator

1
T,: 9 :—> / L(x,y)g(x)dx

T, is a compact operator on C'la 1]. Since L(z,y) > Oforalla < z,y <1

T, maps also the cone of nonnegative functions on [a 1] to nonnegative

functions. we are looking for a nonnegative solution f, with 7,f, = f,
fal f.z)ds = 1.

theorem of Krein and Rutman will guarantee a nonnegative

eigenfunction for the spectral radius



Unique density optimal for the two

Matac

f(z) =

e

X

o= O
] I
=] = O



Compact operators in Hilbert spaces

In the Hilbert space E of square summable sequences, given a nonnegative matrix

. ‘ oo oo 5
(a;;]7° with y: y: lax|” < 0.

i=1 k1
o0

Y; = E X (2= 1,2,mm)
k=1

This operator maps the minihedral normal cone K of nonnegative sequences into /.

Theorem: If there exists indices pq, pa, ... pm, such that

Apypa-Apaps- + - Api 1\ pom - Appy > 0

then we have a positive eigenvalue Ay with an eigenvector v € K.



Definition: An operator U : E — E is called a permutator iff

1. D = UE is finite dimensional

2. We have a basis e, e,...¢e, such that Ue; = ¢, (7 =1,2,...5),

where
1 2
T —
ki ko
is a permutation of the integers 1,2...,s.

If T decomposes into independent cycles (iy, 12, ...14), (J1,J2, - - -

every eigenvalue of U is a solution of the equation

(=D =1)...(¢C -1)=0.

jﬁ)ﬂ <min (mla m?:'m'r)g then



Norm functional

Definition: A norm functional u(x) (z € F) is one that satisfies

L. jz)>0 Hzfl;

2. () = Au(@)

3. wz+y) < p@)+ uy)
Theorem: Let K be a minihedral cone and let A be a compact positive operator. If for
some norm functional p(z), ,p(Ax) < wp(x) (x € E), then the operator A admits a
decomposition into orthogonal parts ,

A=U+A (AU =UAL =90), VAT < 1,

U, is a permutator whose basis lies in K.



Continued

Thus the set of eigenvalues of modulus unity coincides with the set of roots of

(C*=1)(¢7=1)...(¢"=1)=0.

1. Fixed vectors for A and A* have bases vy, vs,...v,, and ¥1,1s,...%, and they lie in
the respective cones K and K*. Further

2. the systems are biorthogonal namely v (v;) =4d;; (4,7 =1,2...,7),
3. Foreachi#j, inf(y;,9;) =20
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