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Sphere packings

Definition

A sphere packing in Rn is a collection of spheres/balls of equal size which
do not overlap (except for touching). The density of a sphere packing is
the volume fraction of space occupied by the balls.
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Sphere packing problem

Problem: Find a/the densest sphere packing(s) in Rn.

In dimension 1, we can achieve density 1 by laying intervals end to end.

In dimension 2, the best possible is by using the hexagonal lattice. [Fejes
Tóth 1940]
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Sphere packing problem II

In dimension 3, the best possible way is to stack layers of the solution in 2
dimensions. This is Kepler’s conjecture, now a theorem of Hales.
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There are infinitely (in fact, uncountably) many ways of doing this! These
are the Barlow packings.
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Face centered cubic packing

Image: Greg A L (Wikipedia), CC BY-SA 3.0 license
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Higher dimensions

In some higher dimensions, we have guesses for the densest sphere
packings.

Most of them arise from lattices.

But (until very recently!) no proofs.

In very high dimensions (say ≥ 1000) densest packings are likely to be
close to disordered.
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Lattices

Definition

A lattice Λ in Rn is a discrete subgroup of rank n, i.e. generated by n
linearly independent vectors of Rn.

Examples:

Integer lattice Zn.

Checkerboard lattice Dn = {x ∈ Zn :
∑

xi even }
Simplex lattice An = {x ∈ Zn+1 :

∑
xi = 0}

Special root lattices E6,E7,E8.

E8 generated by D8 and all-halves vector.
E7 orthogonal complement of a root (or A1) in E8.
E6 orthogonal complement of an A2 in E8.
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Projection of E8 root system

Image: Jgmoxness (Wikipedia), CC BY-SA 3.0 license
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Leech lattice

In dimension 24, there is also the remarkable Leech lattice. It is the unique
even unimodular lattice in that dimension without any roots.

There are many neat constructions of it (for instance, Conway-Sloane give
twenty-three constructions). The usual one involves the extended Golay
code.

My favorite: The lattice II25,1 is generated in R25,1 (which has the
quadratic form x2

1 + · · ·+ x2
25 − x2

26) by vectors in Z26 or (Z + 1/2)26 with
even coordinate sum.

The Weyl vector w = (0, 1, 2, . . . , 24, 70) has norm 0, since
12 + · · ·+ 242 = 702 (!)

The Leech lattice is w⊥/Zw with the induced quadratic form.
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Lattice packing

Associated sphere packing: if m(Λ) is the length of a smallest non-zero
vector of Λ, then we can put balls of radius m(Λ)/2 around each point of
Λ so that they don’t overlap.

The packing problem for lattices asks for the densest lattice(s) in Rn for
every n. This is equivalent to the determination of the Hermite constant
γn, which arises in the geometry of numbers. The known answers are:

n 1 2 3 4 5 6 7 8 24

Λ A1 A2 A3 D4 D5 E6 E7 E8 Leech

due to Lagrange Gauss Korkine- Blichfeldt Cohn-
Zolotareff Kumar
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The new results

Theorem (Viazovska)

The E8 lattice packing is the densest sphere packing in R8.

Theorem (Cohn-Kumar-Miller-Radchenko-Viazovska)

The Leech lattice packing is the densest sphere packing in R24.

The proof is fairly direct, using just two main ingredients:

1 linear programming bounds for packing

2 the theory of modular forms
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Linear programming bounds

Let the Fourier transform of a function f be defined by

f̂ (t) =

∫
Rn

f (x)e2πi〈x ,t〉dx .

Theorem (Cohn-Elkies)

Suppose f : Rn → R is a Schwartz function with the properties

1 f (0) = f̂ (0) = 1.

2 f (x) ≤ 0 for |x | ≥ r (for some number r > 0).

3 f̂ (t) ≥ 0 for all t.

Then the density of any sphere packing in Rn is bounded above by

vol(Bn)(r/2)n.
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LP bounds

Why is it a linear programming bound?

We can rephrase the theorem (by scaling f appropriately) to say: if

1 f̂ (0) = 1

2 f (x) ≤ 0 for |x | ≥ 1

3 f̂ (t) ≥ 0 for all t

then the density is bounded by 2−nvol(Bn)f (0).

Note that the constraints and objective function given are linear in f .
Therefore this is a linear (convex) program.
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Proof

Let’s see the proof for lattices:

Let Λ be any lattice, which we have scaled so its minimal nonzero vector
length is 1. Then the Poisson summation formula tells us

∑
x∈Λ

f (x) =
1

covol(Λ)

∑
t∈Λ∗

f̂ (t)

Now the LHS is ≤ f (0) while the sum in the RHS is ≥ f̂ (0) ≥ 1, yielding

1

covol(Λ)
≤ f (0)

multiplying by the volume of a ball of radius 1/2 tells us that the density is
at most 2−nvol(Bn)f (0).
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Remarks on the LP bound

We can assume f is radial without loss of generality.

For numerical experimentation we can take

f (x) =
N∑
i=0

ciLi (2π|x |2) exp(−π|x |2)

where ci are the coefficients of the linear program, Li are the Laguerre
polynomials (so Li times Gaussian is an eigenfunction for the Fourier
transform).

In dimensions 8 and 24 one can get upper bounds which are
numerically very close to the lower bound coming from E8 or Leech
density.
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LP bounds with dimension

Here is a plot of log(density) vs. dimension.
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as well as where these curves meet.
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Desired functions

Let Λ be E8 or the Leech lattice, and r0, r1, . . . its nonzero vector lengths
(square roots of the even natural numbers, except Leech skips 2). To have
a tight upper bound that matches Λ, we need the function f to look like
this:

r
0

r
1

r
2

x

f(x)

0
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Desired functions

While f̂ must look like this:

r
0

r
1

r
2x

f(x)

0
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Impasse

In [Cohn-Kumar 2009] we used a polynomial of degree 803 and 3000 digits
of precision to find f and f̂ which looked like this with 200 forced double
roots, and r very close to 2.

Obtained an upper bound of Leech lattice density times 1 + 10−30. Similar
bounds for E8. Enough to show Λ24 is the densest lattice. Further
numerical experimentation by Cohn and Miller.

But how do we write down exact functions??

We were stuck for more than a decade.
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Enter Viazovska + modular forms

In March 2016 Viazovska posted a preprint to the arxiv, solving the sphere
packing problem in 8 dimensions.

She found the magic function f !

Her proof used modular forms.
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Modular group

A modular form is a function φ : H → C with a lot of symmetries.

Specifically, let SL2(Z) denote all the integer two by two matrices of
determinant 1.

It acts on the upper half plane by fractional linear transformations:(
a b
c d

)
· z =

az + b

cz + d

In fact the action factors through PSL2(Z) = SL2(Z)/{±1}, and this
quotient group is generated by the images of

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.
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Fundamental domain

The picture shows Dedekind’s famous tesselation of the upper half plane.
The union of a black and a white region makes a fundamental domain for
the action of SL2(Z).

Image from the blog neverendingbooks.org, originally from John Stillwell’s article “Modular miracles” in Amer. Math. Monthly.
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Modular curves

The quotient SL2(Z)\H can be identified with the Riemann sphere CP1

minus a point. Compactifying the quotient by adding this cusp gives an
algebraic curve (namely CP1).

The preimages of this point are ∞ and the rational numbers, i.e. P1(Q).

The principal congruence subgroup of level N is the subgroup Γ(N) of all
the elements of SL2(Z) congruent to the identity modulo N. We say Γ is a
congruence subgroup if it contains some Γ(N). Again the quotient is a
complex algebraic curve; we can compactify it by adding finitely many
cusps, which correpond to the elements of Γ\P1(Q).
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Modular forms

The first condition for a holomorphic function f : H → C to be a modular
form for Γ of weight k is

f

(
az + b

cz + d

)
= (cz + d)k f (z)

for all matrices

g =

(
a b
c d

)
∈ Γ.

Now, for some N the matrix (
1 N
0 1

)
lies in the congruence subgroup, so we must have f (z + N) = f (z).
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Growth condition

So if q = exp(2πiz) then we can write f as a function of q1/N .

The second condition for a modular form says that near ∞, there is a
power series expansion

f =
∑
n≥0

anq
n/N .

Similarly for all the (finitely many) cusps. Defining the slash operator for
g ∈ SL2(Z) as above by

(f |kg)(z) = (cz + d)−k f (gz),

all these f |kg must have holomorphic power series expansion at ∞.

If it’s only a Laurent series, i.e., there are (finitely many) negative powers
of q, we say that f is a weakly holomorphic modular form.
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Examples

How do we find actual examples of modular forms?

The first way is to take simple examples of a “well-behaved” holomorphic
function and symmetrize (recalling that SL2(Z) acts on Z2):

Gk(z) =
∑

(a,b)∈Z2\(0,0)

1

(az + b)k
.

For even k ≥ 4, the sum converges absolutely and we get a non-zero
modular form of weight k . These are called Eisenstein series.
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Eisenstein series

The normalized versions are

E4 = 1 + 240
∑

σ3(n)qn

E6 = 1− 504
∑

σ5(n)qn

Here σk(n) =
∑

d |n,d>0 d
k .

These two in fact generate the algebra of modular forms for the full
modular group SL2(Z).

Another beautiful example is the modular discriminant of weight 12

∆ = (E 3
4 − E 2

6 )/1728 = q
∞∏
n=1

(1− qn)24
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Theta functions

Another source of modular forms is theta functions of lattices:

If Λ is an integral lattice (i.e. all inner products between vectors in the
lattice are integers) of dimension d then

ΘΛ(q) =
∑
v∈Λ

q〈v ,v〉/2 =
∑
n≥0

Nn(Λ)qn/2

is a modular form of weight d/2 for some congruence subgroup (related to
covol(Λ)).

Example

The theta function of E8 is the Eisenstein series E4!
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Theta functions II

There are also classical theta functions studied by Jacobi, of which we will
need:

Θ00(z) :=
∑
n∈Z

exp(πin2z)

(the theta function of Z)

Θ01(z) :=
∑
n∈Z

(−1)n exp(πin2z)

Θ10(z) :=
∑
n∈Z

exp(πi(n + 1/2)2z)

Let U = Θ4
00, V = Θ4

10, W = Θ4
01. These are modular forms of weight 2

for the congruence subgroup Γ(2). They are related by U = V + W .
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L-functions

Usually, from a modular form we make an L-function by taking a Mellin
transform:

L(f , s) =
(2π)s

Γ(s)

∫ ∞
0

f (it)ts
dt

t

which works for <(s) large enough.

These L-functions are a cornerstone of much of modern number theory.

For instance, Wiles’s proof of FLT relies on showing the L-function of a
specific kind of elliptic curve is the same as that of a modular form.
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Quasimodular forms

If we apply the Eisenstein series construction to k = 2, we run into
problems because of non-absolute convergence.

However, we can define

G2(z) =
∑
n 6=0

1

n2
+
∑
m 6=0

∑
n∈Z

1

(mz + n)2

and this double sum converges. Normalizing we have

E2 = 1− 24
∑
n≥0

σ1(n)qn.

The only problem is that E2 is not a genuine modular form:

E2(−1/z) = z2E2(z)− 6i

π
z .
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Quasimodular forms II

Together with modular forms, E2 generates the algebra of quasi-modular
forms.

It can also be obtained by differentiating modular forms. For

f (z) =
∑

anq
n with q = exp(2πiz),

define

f ′(z) := (Df )(z) := q
df

dq
=

1

2πi

df (z)

dz
.

Then one can check

E ′4 = (E2E4 − E6)/3 and E ′6 = (E2E6 − E 2
4 )/2.

In general differentiating a weight k modular forms of weight ` times yields
a polynomial in E2 of degree `, and the resulting quasimodular form has
weight k + 2`. We call ` the depth of the quasimodular form.
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Even eigenfunction

The magic functions for sphere packing arise as (Laplace) transforms of
weakly holomorphic modular or quasi-modular forms.

Consider the weakly holomorphic quasi-modular form of depth 2

φ0 =
(E4E2 − E6)2

∆

and for r >
√

2, define

a(r) = −4 sin(πr2/2)2

∫ i∞

0
φ0

(
−1

z

)
z2eπir

2zdz .

We can extend give an alternative expression for the integral which
extends the domain of definition to r > 0.
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Even eigenfunction II

Note that:

φ0(−1/(it))t2 = O(exp(2πt)) as t →∞. So the integral has a term
proportional to ∫ ∞

0
exp(−π(r2 − 2)t)dt =

1

π(r2 − 2)

which downgrades the double zero of sin(πr2/2)2 to a single zero, as
we wanted.

The quasi-modular property of φ0 can be used to show that a(r) is an
even eigenfunction: the Fourier transform replaces eπir

2z by
z−4eπir

2(−1/z) and then we can use transformation properties under
z → −1/z .
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Even eigenfunction III

Write

−4 sin2(πr2/2) = −2(1− cos(πr2)) = exp(πir2) + exp(−πir2)− 2.

So

a(r) =

∫ i∞

0

φ0(−1/z)z2
(
eπir

2(z+1) + eπir
2(z−1) − 2eπir

2z
)
dz

=

∫ i∞

0

φ0(−1/z)z2eπir
2(z+1)dz +

∫ i∞

0

φ0(−1/z)z2eπir
2(z−1)dz

− 2

∫ i∞

0

φ0(−1/z)z2eπir
2

dz

=

∫ i∞+1

1

φ0

(
−1

u − 1

)
(u − 1)2eπir

2udu +

∫ i∞−1

−1

φ0

(
−1

u + 1

)
(u + 1)2eπir

2udu

− 2

∫ i∞

0

φ0(−1/z)z2eπir
2zdu
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Even eigenfunction IV

We can shift the contour at infinity, and break up the path.

a(r) =

∫ i

1

φ0

(
−1

z − 1

)
(z − 1)2eπir

2zdz +

∫ i∞

i

φ0

(
−1

z − 1

)
(z − 1)2eπir

2zdz

+

∫ i

−1

φ0

(
−1

z + 1

)
(z + 1)2eπir

2zdz +

∫ i∞

i

φ0

(
−1

z + 1

)
(z + 1)2eπir

2zdz

− 2

∫ i

0

φ0(−1/z)z2eπir
2

dz − 2

∫ i∞

i

φ0(−1/z)z2eπir
2

dz

We will combine the second, fourth and sixth integrals. Note that

z2φ0(−1/z) = z2φ0(z) + zφ−2(z) + φ−4(z)

where φ0, φ−2, φ−4 are quasimodular forms of depth 2, 1, 0 and weight
0,−2,−4 respectively. In any case, they are all invariant under T .

Abhinav Kumar (Stony Brook, ICTS) Recent breakthroughs in sphere packing November 8, 2019 36 / 47



Even eigenfunction IV

We can shift the contour at infinity, and break up the path.

a(r) =

∫ i

1

φ0

(
−1

z − 1

)
(z − 1)2eπir

2zdz +

∫ i∞

i

φ0

(
−1

z − 1

)
(z − 1)2eπir

2zdz

+

∫ i

−1

φ0

(
−1

z + 1

)
(z + 1)2eπir

2zdz +

∫ i∞

i

φ0

(
−1

z + 1

)
(z + 1)2eπir

2zdz

− 2

∫ i

0

φ0(−1/z)z2eπir
2

dz − 2

∫ i∞

i

φ0(−1/z)z2eπir
2

dz

We will combine the second, fourth and sixth integrals. Note that

z2φ0(−1/z) = z2φ0(z) + zφ−2(z) + φ−4(z)

where φ0, φ−2, φ−4 are quasimodular forms of depth 2, 1, 0 and weight
0,−2,−4 respectively. In any case, they are all invariant under T .

Abhinav Kumar (Stony Brook, ICTS) Recent breakthroughs in sphere packing November 8, 2019 36 / 47



Even eigenfunction V

Therefore, the second difference operator just acts on the multipliers on
z2, z , 1, yielding

φ0

(
−1

z + 1

)
(z + 1)2 + φ0

(
−1

z − 1

)
(z − 1)2 − φ0

(
−1

z

)
z2

= φ0(z)
(
(z + 1)2 + (z − 1)2 − 2z2

)
= 2φ0(z).

Therefore

a(r) =

∫ i

1

φ0

(
−1

z − 1

)
(z − 1)2eπir

2zdz +

∫ i

−1

φ0

(
−1

z + 1

)
(z + 1)2eπir

2zdz

− 2

∫ i

0

φ0(−1/z)z2eπir
2zdz + 2

∫ i∞

i

2φ0(z)eπir
2zdz .
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Fourier transform

We have

â(r) =

∫ i

1

φ0

(
−1
z−1

) (z − 1)2

z4
e
πir2

(−1
z

)
dz +

∫ i

−1

φ0

(
−1
z+1

) (z + 1)2

z4
e
πir2

(−1
z

)
dz

− 2

∫ i

0

φ0(−1/z)z2z−4eπir
2(−1/z)dz − 2

∫ i∞

i

2φ0(z)z−4eπir
2(−1/z)dz

=

∫ i

−1

φ0

(
1− 1

w+1

)
(w + 1)2eπir

2wdw +

∫ i

1

φ0

(
−1
w−1 − 1

)
(w − 1)2eπir

2wdw

− 2

∫ i

i∞
φ0(w)eπir

2wdw + 2

∫ 0

i

2φ0(−1/w)w2eπir
2wdw

= a(r).

using the change of variable z = −1/w , dz = 1/w2dw , and the T -invariance of
φ0.

So we have created a +1-eigenfunction for the Fourier transform.
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â(r) =

∫ i

1

φ0

(
−1
z−1

) (z − 1)2

z4
e
πir2

(−1
z

)
dz +

∫ i

−1

φ0

(
−1
z+1

) (z + 1)2

z4
e
πir2

(−1
z

)
dz

− 2

∫ i

0

φ0(−1/z)z2z−4eπir
2(−1/z)dz − 2

∫ i∞

i

2φ0(z)z−4eπir
2(−1/z)dz

=

∫ i

−1

φ0

(
1− 1

w+1

)
(w + 1)2eπir

2wdw +

∫ i

1

φ0

(
−1
w−1 − 1

)
(w − 1)2eπir

2wdw

− 2

∫ i

i∞
φ0(w)eπir

2wdw + 2

∫ 0

i

2φ0(−1/w)w2eπir
2wdw

= a(r).

using the change of variable z = −1/w , dz = 1/w2dw , and the T -invariance of
φ0.

So we have created a +1-eigenfunction for the Fourier transform.

Abhinav Kumar (Stony Brook, ICTS) Recent breakthroughs in sphere packing November 8, 2019 38 / 47



Odd eigenfunction

Let

ψ =
2W 3(5UV + 2W 2)

∆
.

It is a weakly holomorphic modular form of weight −2 for the congruence
subgroup Γ0(2).

Define

b(r) = −4r2 sin(πr2/2)2

∫ i∞

0
ψ(z)eπir

2zdz .

We can similarly show that b(r) is an odd eigenfunction for the Fourier
transform, and has a single root at r =

√
2 and double roots at other

√
2n.
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Odd eigenfunction II

Write ψT = ψ|−2T and ψS = ψ|−2S . Then it is easy to verify that
ψS + ψT = ψ, from which it follows that ψT |−2S = −ψT . Also,
ψS |−2S = ψ and finally ψ|−2T

−1 = ψT since T−2 ∈ Γ(2).

We rewrite the integral as before

b(r) =

∫ i∞

0
ψ(z)eπir

2(z+1)dz +

∫ i∞

0
ψ(z)eπir

2(z−1)dz

− 2

∫ i∞

0
ψ(z)eπir

2zdz

=

∫ i∞

1
ψ(z − 1)eπir

2zdz +

∫ i∞

−1
ψ(z + 1)eπir

2zdz

− 2

∫ i∞

0
ψ(z)eπir

2zdz

=

∫ i∞

1
ψT (z)eπir

2zdz +

∫ i∞

−1
ψT (z)eπir

2zdz − 2

∫ i∞

0
ψ(z)eπir

2zdz
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Odd eigenfunction III

b(r) =

∫ i

1
ψT (z)eπir

2zdz +

∫ i

−1
ψT (z)eπir

2zdz − 2

∫ i

0
ψ(z)eπir

2zdz

+ 2

∫ i∞

i
(ψT (z)− ψ(z))eπir

2zdz

=

∫ i

1
ψT (z)eπir

2zdz +

∫ i

−1
ψT (z)eπir

2zdz − 2

∫ i

0
ψ(z)eπir

2zdz

− 2

∫ i∞

i
ψS(z)eπir

2zdz .

This extends the domain of definition to r > 0. Note that ψ(it) = O(e2πt)
as t →∞ gives a pole at r =

√
2 for the integral, just as in the even case.

To check that we have an odd eigenfunction, we compute
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Odd eigenfunction IV

b̂(r) =

∫ i

1
ψT (z)z−4eπir

2(−1/z)dz +

∫ i

−1
ψT (z)z−4eπir

2(−1/z)dz

− 2

∫ i

0
ψ(z)z−4eπir

2(−1/z)dz − 2

∫ i∞

i
ψS(z)z−4eπir

2(−1/z)dz

=

∫ i

1
ψT (−1/w)w2eπir

2wdw +

∫ i

−1
ψT (−1/w)w2eπir

2wdw

− 2

∫ i

0
ψ(−1/w)w2eπir

2wdw − 2

∫ i∞

i
ψS(−1/w)w2eπir

2wdw

=

∫ i

−1
ψTS(w)eπir

2wdw +

∫ i

1
ψTS(w)eπir

2wdw

− 2

∫ i

∞
ψS(w)eπir

2wdw − 2

∫ 0

i
ψ(w)eπir

2wdw
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Odd eigenfunction IV
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∫ i
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∫ i
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2wdw
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∫ i
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∫ 0

i
ψ(w)eπir

2wdw

Abhinav Kumar (Stony Brook, ICTS) Recent breakthroughs in sphere packing November 8, 2019 42 / 47



Odd eigenfunction IV

b̂(r) =

∫ i

1
ψT (z)z−4eπir

2(−1/z)dz +

∫ i

−1
ψT (z)z−4eπir

2(−1/z)dz

− 2

∫ i
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=

∫ i

−1
ψTS(w)eπir

2wdw +

∫ i

1
ψTS(w)eπir

2wdw

− 2

∫ i
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Odd eigenfunction V

So

b̂(r) = −
∫ i

−1
ψT (w)eπir

2wdw −
∫ i

1
ψT (w)eπir

2wdw

+ 2

∫ ∞
i

ψS(w)eπir
2wdw + 2

∫ i

0
ψ(w)eπir

2wdw

= −b(r)

where we used ψTS = −ψT .
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Putting everything together

Now, we can take a linear combination of a(r) and b(r) to make f such
that f and f̂ have the desired properties (for instance, to make f̂ vanish to
order 2 at

√
2.

One still has to verify that there are no extra roots, but this can be done
by analyzing the underlying integrands.

At the moment, this last verification of the required inequalities needs a
computer-assisted proof.
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Leech lattice

The proof of optimality of Leech in R24 proceeds along similar lines,
though it is more complicated.

We just write down the kernels here, which have the same form.

For the even eigenfunction, the integrand has the weakly holomorphic
quasimodular form

φ =
(25E 4

4 − 49E 2
6E4) + 48E6E

2
4E2 + (−49E 3

4 + 25E 2
6 )E 2

2

∆2
.

For the odd eigenfunction, the integrand has the weakly holomorphic
modular form for Γ(2)

ψ =
W 5(7UV + 2W 2)

∆2
.
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Beyond sphere packing in 8 and 24 dimensions

One big open problem is to find magic functions for dimension 2 (even
though we know the A2 lattice gives the densest sphere packing, by a
relatively elementary argument).

In other dimensions, we do not expect this technique to give sharp bounds,
but it may yield better upper bounds for sphere packing than the current
records.

We have since also worked on a wide generalization of the sphere packing
problem to energy minimization, and have proved that E8 and the Leech
lattice are universally optimal for Gaussian (and therefore inverse power
law) potential functions in their respective dimensions, via sharp LP
bounds for energy.
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