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Monge-Kantorovich Optimal Transport problem
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P,Q - probabilities on X ,Y, respectively, say both Rd .
c(x , y) - cost of transport. E.g., c(x , y) = ‖x − y‖ or
c(x , y) = 1

2 ‖x − y‖2.
Monge problem: minimize among T : Rd → Rd , T#P = Q,∫

c (x ,T (x)) dP.
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Π(P,Q) - couplings of (P,Q) (joint dist. with given marginals).
(Monge-) Kantorovich relaxation: minimize among ν ∈ Π(P,Q)

inf
ν∈Π(P,Q)

[∫
c (x , y) dν

]
.

Linear optimization in ν over convex Π(P,Q).
Monge solution - (X ,T (X )), X ∼ P, in Π(P,Q).



Duality

cost → price
Among all functions φ(y), ψ(x) s.t. φ(y)− ψ(x) ≤ c(x , y),
maximize profit

sup
φ,ψ

[∫
φ(y)Q(dy)−

∫
ψ(x)P(dx)

]
.

(Kantorovich duality) inf cost = sup profit.
For the optimal “Kantorovich potentials”

φc(x)− ψc(y) = c(x , y),

“optimal coupling” νc - almost surely.



Quadratic cost: Brenier’s theorem

How do OT looks like? Very special!
c(x , y) = 1

2 ‖x − y‖2. Assume P has density ρ0.
(Y. Brenier) ∃ a convex F s.t. (X ,∇F (X )), X ∼ ρ0 solves

(MK−OT) W2
2(P,Q) := inf

Π(P,Q)

[∫
c (x , y) dν

]
.

K.- potentials? F ∗(y)- Legendre convex dual of F .

φc(x) =
1
2
‖x‖2 − F (x), −ψc(y) =

1
2
‖y‖2 − F ∗(y).

φc(x)− ψc(y) = 1
2 ‖x − y‖2, for y = ∇F (x), i.e., a.s. νc .



A generalized notion of convexity (Gangbo-McCann)
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Convex functions lie above their tangents.
c-convex function ψ(x) lie above the cost curve c(·, y), y ∈ ∂cψ(x).
optimal Kantorovich potentials are c-concave.

ψc(x) = sup
y

[φc(y)− c(x , y)] , φc(y)−ψc(x) = c(x , y), y ∈ ∂cψ(x).



Convex cost: Gangbo - McCann ’96

c(x , y) = g(x − y), g strictly convex +
P has density ρ0.
∃ c-concave function ψc(x) for which

T (x) = x − (∇g)−1 ◦ ∇ψc(x)

is s.t. (X ,T (X )), X ∼ ρ0, ! solves the MK OT problem.
T (x) ∈ ∂cψc(x).
Monge solution is also MK solution.
Does not cover g(z) = ‖z‖ or g(z) = 1{z 6= 0}.



Existence of Monge solution

Sufficient conditions (Bernard-Buffoni, Villani, De Philippis)
X ,Y bounded, open. P,Q have densities.
c(x , y) ∈ C 2.
y 7→ Dxc(x , y) is injective for each x (Twist condition).
x 7→ Dyc(x , y) is injective for each y .
See book by Villani Chapter 10.
Smoothness of optimal T . Ma-Trudinger-Wang ’05, Loeper ’09 (see
Villani, Chap 12).



Transport in one dimension

Suppose X = R = Y.
for all convex c(x , y) = g(x − y) the OT map is well-known.
Monotone transport AKA inverse c.d.f. transform.

T (x) = G−1
1 ◦ G0(x),

G0,G1 - c.d.f. of P,Q, resp, continuous.
Optimal, unique if g is strict. (Homework)



Entropic Relaxation or Entropic Regularization



OT and statistics

Goal: Fit data to model. Classical: MLE.
Recent: minimize W2

2(data,model).
Better estimates, more stable, high dimension, Adversarial Network
training.
Problem is computation. Discrete MK-OT.

Given two empirical distributions

n∑
i=1

piδxi ,
n∑

j=1

qjδyj ,
∑
i

pi = 1 =
∑
j

qj ,

minimize 〈c ,M〉 :=
∑

i

∑
j c(xi , yj)Mij , among all n × n matrices

M ≥ 0 with row sum p and col sum q.
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Entropic relaxation, Cuturi ’13

Linear programing M. Simplex, interior point methods give
complexity O(n3 log n). Pretty bad.

Define
Ent(M) =

∑
i,j

Mij logMij , 0 log 0 = 0.

For h > 0, minimize [〈c ,M〉+ hEnt(M)].
Penalizes degenerate solutions (sparse M). Optimal h ↓ 0.
Computational complexity ≈ O

(
n2 log n

)
. How?
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Entropic relaxation: solution

For h > 0, minimize [〈c ,M〉+ hEnt(M)].
Solution (Lagrange multipliers + calculus): ∃u, v ∈ Rn

Mc = Diag(u) exp

(
−1
h
c

)
Diag(v), i.e.,

Mc(i , j) = ui exp

(
−1
h
c(xi , yj)

)
vj , 1 ≤ i , j ≤ n.

Remember this form. Will get back in continuum.



Sinkhorn algorithm AKA IPFP

Mc can be solved by Iterative Proportional Fitting Procedure.
Start with M0 = exp

(
− 1

hc
)
. Inductively ...

Rescale rows of Mk to get Mk+1 with row sum p.
Rescale columns of Mk+1 to get Mk+2 with col sum q.
Limit = Mc .
Called Sinkhorn iterations in Linear Algebra.



Entropic relaxation in continuum

Recall X ,Y ⊆ Rd . Cost c(x , y).
P,Q have densities ρ0, ρ1.
For density ν ∈ Π(ρ0, ρ1),

Ent(ν) =

∫
ν(x , y) log ν(x , y)dxdy .

Entropic relaxation: h > 0,

minimize
[∫

c(x , y)ν(x , y)dxdy + hEnt(ν), ν ∈ Π(ρ0, ρ1)

]
.



Entropic relaxation: continuum solution

(Hobby - Pyke ’65, Rüschendorff-Thomsen ’93) Optimal solution

νc(x , y) = exp

(
a(x) + b(y)− 1

h
c(x , y)

)

= u(x) exp

(
−1
h
c(x , y)

)
v(y).

Just like the discrete case.
Can be computed by IPFP. Unfortunately, very slow convergence.



Entropic duality

Recall duality for MK-OT: infΠ(ρ0,ρ1)

∫
c(x , y)ν(x , y)dxdy

= sup
φ(y)−ψ(x)≤c(x,y)

[∫
φ(y)ρ1(y)dy −

∫
ψ(x)ρ0(x)dx

]
.

Duality for entropic relaxation: Solve

sup

[∫
φ(y)ρ1(y)dy −

∫
ψ(x)ρ0(x)dx − h

∫
eφ(y)− 1

h c(x,y)−ψ(x)

]
.

Optimal solutions: ψ(y) = b(y), φ(x) = −a(x).
a, b are Schrödinger potentials.



Schrödinger bridges, Large Deviations



Schrödinger’s problem: Lazy gas experiment

Imagine N ≈ ∞ independent gas molecules in a cold chamber.
Initial configuration of particles L0 = 1

N

∑N
i=1 δxi ≈ P.

Each particle independent Brownian motion with σ2 ≈ 0.
Condition of the terminal configuration L1 = 1

N

∑N
j=1 δyj ≈ Q.

(Schrödinger ’32) What is the probability of the above event?
What is the most likely path followed by an individual gas molecule?



Föllmer’s reformulation ’88

Relative Entropy (RE) of µ w.r.t. ν

H(µ | ν) =

∫
log

(
dµ

dν

)
dµ.

R - Law of σ2 BM on C [0, 1], initial distribution P.
Among all probability µ on C [0, 1] s.t. X0 ∼ P, X1 ∼ Q,

minimize H (µ | R) .

Solution is Schrödinger bridge between P and Q.
Take σ2 ↓ 0.



Föllmer’s disintegration

Brownian transition

pσ(x , y) =
1

(
√
2π)d

exp

(
− 1
2σ2 ‖y − x‖2

)
.

(Föllmer) Let R01 be the law of (X0,X1). Find ν ∈ Π(P,Q) to

minimize H(ν | R01).

Generate (X0,X1) from the minimizer. Schrödinger bridge is σ2

Brownian bridge given X0 = x0,X1 = x1.



Entropic relxation and Schrödinger bridge

Minimize H(ν | R01) is the same problem as

minimize
[
1
2

∫
‖y − x‖2 dν + σ2Ent(ν)

]
.

Entropic relaxation h = σ2 for the quadratic cost.
Schrödinger bridge description: solve the entropic relaxation and join
by Brownian bridge.
What happens when σ2 ↓ 0?



Large deviation

As h = σ2 → 0+, the optimal entropic coupling converges to the
MK-optimal coupling.
Recall Brenier: P(dx) = ρ0(x)dx , Q(dy) = ρ1(y)dy .
∃ F such that y = ∇F (x) gives Monge.
σ2 Brownian bridge converges to a constant velocity straight line
joining x and y .
Can be made precise by Large Deviation theory.
Let ρt be law at time t of this limit. McCann interpolation between
ρ0 and ρ1. Remember this name for later.



(f , g) transform of Markov processes

How to describe the law of Schrödinger bridges? SDE? PDE?
Markovian (f , g) transform of reversible Wiener measure W:

dµ = f (X0)g(X1)dW, EWf (X0)g(X1) = 1.

Similar to Girsanov / Doob’s h-transform, but on both sides.
Markovian diffusion both forward and backward.



Generators for Schrödinger bridges

Let µt be the law of the σ2 = 1 Schrödinger bridge.
Recall Schrödinger potentials: a(x), b(y).
Define, heat-flows

bt(y) = logW
(
eb(X1) | Xt = y

)
, at(x) = logW

(
ea(X0) | Xt = x

)
.

Schrödinger bridge is BM with drift ∇bt forward in time.
Schrödinger bridge is BM with drift ∇at backward in time.
Most properties are poorly understood.



Dynamics and geometry



McCann interpolation
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P2
(
Rd
)
- square integrable probabilities

Recall: ρ0 transported to ρ1. c(x , y) = 1
2 ‖y − x‖2.

Square-root optimal cost W2(ρ0, ρ1) is a metric.
ρt = Law of (1− t)X + tT (X ), X ∼ ρ0, 0 ≤ t ≤ 1.



Wasserstein geodesics

Extend to Riemannian manifolds (M,d).
c(x , y) = 1

2d
2(x , y). Metric W2(ρ0, ρ1).

(Otto + etc.) Riemannian geometry on P2 (M).
(ρt , 0 ≤ t ≤ 1) - geodesic (straight line) joining ρ0 and ρ1.
(McCann + etc.) Many natural objects such as entropy are (semi-)
convex functions over these lines.



Ricci curvature

(McCann, Lott-Sturm-Villani) Synthetic view of Ricci curvature.
Villani ’09: Take a perfect gas in which particles do not interact,
and ask to move from a certain prescribed density field at time
t = 0, to another prescribed density field at time t = 1. Since the
gas is lazy, it will find a way to do so that needs a minimal amount
of work (least action principle). Measure the entropy of the gas at
each time, and check that it always lies above the line joining the
final and initial entropies. If such is the case, then we know that we
live in a nonnegatively curved space.
This is, of course, Schrödinger bridge in the limit. What about
σ2 > 0? (Conforti, Gigli)



Current activities

In spite of their importance, Schrödinger bridges are (still) poorly
understood. Many active areas:
Generalizations to other cost functions (Léonard, Mikami)
Discrete spaces, Markov chains, jump processes (Erbar, Maas)
PDE, Smooth approximations to Wasserstein geodesics (Gigli-
Tamimani etc.)
Behavior of entropy, functional inequalities (Conforti,
Conforti-Tamanini)
Statistics (Cuturi, Peyré, Carlier, Rigollet, Weed)
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