Quantitative Diagonalizability

Part I: Three Measures of Nonnormality

$$\epsilon - \text{pseudospectrum}$$

$$\Lambda_{\epsilon}(M) \coloneqq \{z \in \mathbb{C} : ||(z - M)^{-1}|| \ge \epsilon^{-1}\}$$

For normal matrices, $\Lambda_{\epsilon}(M) = \Lambda_0(M) + D(0, \epsilon)$

(a) normal

(b) nonnormal

Pseudospectrum of Toeplitz Example

$$\epsilon - \text{pseudospectrum}$$

$$\Lambda_{\epsilon}(M) \coloneqq \{z \in \mathbb{C} : ||(z - M)^{-1}|| \ge \epsilon^{-1}\}_{\text{In } z}$$

e.g. discretization of pde from acoustics:

 $\operatorname{Re} z$

[Bauer-Fike]:
$$\Lambda_{\epsilon}(M) \subset \Lambda_{0}(M) + \kappa_{e}(M)D(0,\epsilon)$$

For distinct eigs $\Lambda_{\epsilon}(M) = \Lambda_{0}(M) + \cup_{i} D(\lambda_{i},\kappa(\lambda_{i})\epsilon) + o(\epsilon)$

Part II: Davies' Conjecture

(with Jess Banks, Archit Kulkarni, Satyaki Mukherjee)

Diagonalization

 $A \in \mathbb{C}^{n \times n}$ is **diagonalizable** if $A = VDV^{-1}$ for invertible V, diagonal D. Every matrix is a limit of diagonalizable matrices.

Let $\kappa_e(A) \coloneqq ||V|| \cdot ||V^{-1}||$ be the **eigenvector condition number** of A.

Diagonalization

 $A \in \mathbb{C}^{n \times n}$ is **diagonalizable** if $A = VDV^{-1}$ for invertible V, diagonal D. Every matrix is a limit of diagonalizable matrices.

Let $\kappa_e(A) \coloneqq ||V|| \cdot ||V^{-1}||$ be the **eigenvector condition number** of A.

 $\kappa_e(A) = 1$ for normal, ∞ for nondiagonalizable

Diagonalization

 $A \in \mathbb{C}^{n \times n}$ is **diagonalizable** if $A = VDV^{-1}$ for invertible V, diagonal D. Every matrix is a limit of diagonalizable matrices.

Let $\kappa_e(A) \coloneqq ||V|| \cdot ||V^{-1}||$ be the **eigenvector condition number** of A. $A + E \kappa_e \ll \infty$ Kρ $= \infty$ **Question:** Given a matrix A and $\delta > 0$, what is $\min\{\kappa_e(A + E): ||E|| \le \delta\}$? Motivation: Computing Matrix Functions **Problem.** Compute f(A) for analytic function f, e.g. $f(z) = e^z, z^p$. Motivation: Computing Matrix Functions **Problem.** Compute f(A) for analytic function f, e.g. $f(z) = e^z, z^p$. **Naïve Approach**. $f(A) = Vf(D)V^{-1}$. Highly unstable if $\kappa_e(A)$ is big. Motivation: Computing Matrix Functions **Problem.** Compute f(A) for analytic function f, e.g. $f(z) = e^{z}, z^{p}$. **Naïve Approach**. $f(A) = Vf(D)V^{-1}$. Highly unstable if $\kappa_{e}(A)$ is big. **e.g.** $n \times n$ Toeplitz, n=100:

 $\mathbf{A} = \begin{bmatrix} 0 & 1/2 & & \\ -2 & 0 & \ddots & \\ & \ddots & \ddots & 1/2 \\ & & -2 & 0 \end{bmatrix}$ $\kappa_e(A) = 2^{n-1} \approx 10^{30}$

Motivation: Computing Matrix Functions **Problem.** Compute f(A) for analytic function f, e.g. $f(z) = e^z, z^p$. **Naïve Approach**. $f(A) = Vf(D)V^{-1}$. Highly unstable if $\kappa_e(A)$ is big.

e.g. $n \times n$ Toeplitz, n=100:

experiment by M. Embree

Motivation: Computing Matrix Functions **Problem.** Compute f(A) for analytic function f, e.g. $f(z) = e^{z}, z^{p}$. **Naïve Approach**. $f(A) = Vf(D)V^{-1}$. Highly unstable if $\kappa_{e}(A)$ is big.

Empirically: A is close to a matrix with much better κ_e .

SIAM J. MATRIX ANAL. APPL. Vol. 29, No. 4, pp. 1051–1064

APPROXIMATE DIAGONALIZATION*

E. B. DAVIES^{\dagger}

Idea. Approximate f(A) by f(A + E) for some small E.

SIAM J. MATRIX ANAL. APPL. Vol. 29, No. 4, pp. 1051–1064

APPROXIMATE DIAGONALIZATION*

E. B. DAVIES^{\dagger}

Idea. Approximate f(A) by f(A + E) for some small E.

 $\underline{\mathsf{e.g.}}f(A) = \sqrt{A}$

- E = randn(n) * delta
- [V, D] = eig(A+E)
- $S = V * D . ^ (1/2) * inv (V)$

SIAM J. MATRIX ANAL. APPL. Vol. 29, No. 4, pp. 1051–1064

APPROXIMATE DIAGONALIZATION*

E. B. DAVIES^{\dagger}

Idea. Approximate f(A) by f(A + E) for some small E.

experiment by M. Embree

Approximate Diagonalization

Theorem. [Davies'06] For every $A \in \mathbb{C}^{n \times n}$ with $||A|| \le 1$ and $\delta \in (0,1)$ there is a perturbation *E* such that

$$\kappa_e(A+E) \le C\left(\sqrt{\frac{n}{\delta}}\right)^{n-1}$$

Approximate Diagonalization

Theorem. [Davies'06] For every $A \in \mathbb{C}^{n \times n}$ with $||A|| \le 1$ and $\delta \in (0,1)$ there is a perturbation E such that

$$\kappa_e(A+E) \le C\left(\sqrt{\frac{n}{\delta}}\right)^{n-1}$$

Conjecture. For every $A \in \mathbb{C}^{n \times n}$ with $||A|| \le 1$ and $\delta \in (0,1)$ there is a perturbation *E* such that

$$\kappa_e(A+E) \le \frac{C_n}{\delta}$$

Approximate Diagonalization

Theorem. [Davies'06] For every $A \in \mathbb{C}^{n \times n}$ with $||A|| \le 1$ and $\delta \in (0,1)$ there is a perturbation E such that

$$\kappa_e(A+E) \le C\left(\sqrt{\frac{n}{\delta}}\right)^{n-1}$$

Conjecture. For every $A \in \mathbb{C}^{n \times n}$ with $||A|| \le 1$ and $\delta \in (0,1)$ there is a perturbation *E* such that

$$\kappa_e(A+E) \le \frac{C_n}{\delta}$$

[Davies'06]: true for n = 3 and for special case $A = J_n$, with $C_n = 2$.

Main Result

Theorem A. For every $A \in \mathbb{C}^{n \times n}$ with $||A|| \le 1$ and $\delta \in (0,1)$ there is a perturbation *E* such that

$$\kappa_e(A+E) \le \frac{4n^{3/2}}{\delta}$$

Main Result

Theorem A. For every $A \in \mathbb{C}^{n \times n}$ with $||A|| \le 1$ and $\delta \in (0,1)$ there is a perturbation *E* such that

$$\kappa_e(A+E) \le \frac{4n^{3/2}}{\delta}$$

Implies every matrix has a 1/poly(n) perturbation with $\kappa_e \leq poly(n)$

Main Result

Theorem A. For every $A \in \mathbb{C}^{n \times n}$ with $||A|| \le 1$ and $\delta \in (0,1)$ there is a perturbation *E* such that

$$\kappa_e(A+E) \le \frac{4n^{3/2}}{\delta}$$

Implies every matrix has a 1/poly(n) perturbation with $\kappa_e \leq poly(n)$

Implied by a stronger probabilistic result on **eigenvalue condition numbers.**

Theorem B. Assume $||A|| \le 1$ and let *G* have i.i.d. *complex* standard Gaussian entries. Let $\lambda_1, ..., \lambda_n$ be the eigenvalues of $A + \gamma G$.

Theorem B. Assume $||A|| \le 1$ and let *G* have i.i.d. *complex* standard Gaussian entries. Let $\lambda_1, ..., \lambda_n$ be the eigenvalues of $A + \gamma G$

$$z = x + iy$$
 where $x, y \sim N\left(0, \frac{1}{2}\right)$

Theorem B. Assume $||A|| \le 1$ and let G have i.i.d. *complex* standard Gaussian entries. Let $\lambda_1, ..., \lambda_n$ be the eigenvalues of $A + \gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$\mathbb{E}\sum_{\lambda_i\in B}\kappa^2(\lambda_i)\leq \frac{n}{\pi\gamma^2}\cdot vol(B)$$

 λ_2

Theorem B. Assume $||A|| \le 1$ and let G have i.i.d. *complex* standard Gaussian entries. Let $\lambda_1, ..., \lambda_n$ be the eigenvalues of $A + \gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$\mathbb{E}\sum_{\lambda_i\in B}\kappa^2(\lambda_i)\leq \frac{n}{\pi\gamma^2}\cdot vol(B)$$

 λ_2

cf. Precise asymptotic results for A = 0 [Chalker-Mehlig'98,...Bourgade-Dubach'18,Fyodorov'18]

and A = Toeplitz [Davies-Hager'08,...Basak-Paquette-Zeitouni'14-18, Sjostrand-Vogel'18]

Theorem B. Assume $||A|| \le 1$ and let G have i.i.d. *complex* standard Gaussian entries. Let $\lambda_1, ..., \lambda_n$ be the eigenvalues of $A + \gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$\mathbb{E}\sum_{\lambda_i \in B} \kappa^2(\lambda_i) \leq \frac{n}{\pi\gamma^2} \cdot vol(B)$$

 λ_2

cf. Precise asymptotic results for A = 0 [Chalker-Mehlig'98,...Bourgade-Dubach'18,Fyodorov'18] and A =Toeplitz [Davies-Hager'08,...Basak-Paquette-Zeitouni'14-18, Sjostrand-Vogel'18] **Remark**: Bourgade-Dubach implies that Theorem B is sharp for A = 0

Theorem B. Assume $||A|| \le 1$ and let G have i.i.d. *complex* standard Gaussian entries. Let $\lambda_1, ..., \lambda_n$ be the eigenvalues of $A + \gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$\mathbb{E}\sum_{\lambda_i\in B}\kappa^2(\lambda_i)\leq \frac{n}{\pi\gamma^2}\cdot vol(B)$$

Theorem B. Assume $||A|| \leq 1$ and let G have i.i.d. *complex* standard Gaussian entries. Let $\lambda_1, ..., \lambda_n$ be the eigenvalues of $A + \gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$\mathbb{E}\sum_{\lambda_i\in B}\kappa^2(\lambda_i)\leq \frac{n}{\pi\gamma^2}\cdot vol(B)$$

Proof of Theorem A. Let $\gamma < 1/\sqrt{n}$. whp $||A + \gamma G|| \le 3$ so all $\lambda_i \in B = D(0,3)$.

Theorem B. Assume $||A|| \leq 1$ and let G have i.i.d. *complex* standard Gaussian entries. Let $\lambda_1, ..., \lambda_n$ be the eigenvalues of $A + \gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$\mathbb{E}\sum_{\lambda_i\in B}\kappa^2(\lambda_i)\leq \frac{n}{\pi\gamma^2}\cdot vol(B)$$

Proof of Theorem A. Let $\gamma < 1/\sqrt{n}$. whp $||A + \gamma G|| \le 3$ so all $\lambda_i \in B = D(0,3)$. Then with constant prob.

$$\kappa_e(A + \gamma G) \leq \sqrt{n \cdot \sum_{\lambda_i \in B} \kappa^2(\lambda_i)} \leq \frac{O(n)}{\gamma}$$

Theorem B. Assume $||A|| \leq 1$ and let G have i.i.d. *complex* standard Gaussian entries. Let $\lambda_1, ..., \lambda_n$ be the eigenvalues of $A + \gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$\mathbb{E}\sum_{\lambda_i\in B}\kappa^2(\lambda_i)\leq \frac{n}{\pi\gamma^2}\cdot vol(B)$$

Proof of Theorem A. Let $\gamma < 1/\sqrt{n}$. whp $||A + \gamma G|| \le 3$ so all $\lambda_i \in B = D(0,3)$. Then with constant prob.

$$\kappa_e(A + \gamma G) \leq \sqrt{n \cdot \sum_{\lambda_i \in B} \kappa^2(\lambda_i)} \leq \frac{O(n)}{\gamma} \leq \frac{O(n^{3/2})}{\delta}$$
$$\delta \approx \gamma \sqrt{n}$$

Proof of Theorem B

1. Area of the pseudospectrum

Lemma 1: If *M* has distinct eigenvalues then for every open *B*:

$$\pi \sum_{\lambda_i \in B} \kappa(\lambda_i)^2 = \lim_{\epsilon \to 0} \frac{\operatorname{vol}(\Lambda_{\epsilon}(M) \cap B)}{\epsilon^2}$$

<board>

1. Area of the pseudospectrum

Lemma 1: If *M* has distinct eigenvalues then for every open *B*:

$$\pi \sum_{\lambda_i \in B} \kappa(\lambda_i)^2 = \lim_{\epsilon \to 0} \inf \frac{vol(\Lambda_\epsilon(M) \cap B)}{\epsilon^2}$$

<board>

2. Real Anticoncentration

Theorem[Sankar-Spielman-Teng'06]: For any real $n \times n$ matrix M, and G with i.i.d. real N(0,1) entries: $\mathbb{P}[\sigma_n(M + \gamma G) \le \epsilon] \le C\sqrt{n}\epsilon/\gamma$

<board>

2. Real Anticoncentration

Theorem[Sankar-Spielman-Teng'06]: For any real $n \times n$ matrix M, and G with i.i.d. real N(0,1) entries: $\mathbb{P}[\sigma_n(M + \gamma G) \le \epsilon] \le C\sqrt{n\epsilon}/\gamma$

Proof Idea:

Let $M + \gamma G$ have columns $m_i + \gamma g_i$, Let $S = span\{m_i + \gamma g_i\}_{i>2}$

$$\mathbb{P}[dist(m_1 + \gamma g_1, S) \le \epsilon] = \mathbb{P}[|\langle m_1 + \gamma g_1, w\rangle| \le \epsilon] \\= \mathbb{P}[|\langle m_1, w\rangle - \gamma g| \le \epsilon] \le \epsilon/\gamma$$

Orthogonal invariance

anticoncentration

2'. Complex Anticoncentration

Lemma 2. For any complex $n \times n$ matrix M, and G with i.i.d. complex $N(0,1_{\mathbb{C}})$ entries:

 $\mathbb{P}[\sigma_n(M + \gamma G) \le \epsilon] \le n\epsilon^2/\gamma^2$

Proof Idea:

Let $M + \gamma G$ have columns $m_i + \gamma g_i$, Let $S = span\{m_i + \gamma g_i\}_{i>2}$

$$\mathbb{P}[dist(m_1 + \gamma g_1, S) \le \epsilon] = \mathbb{P}[|\langle m_1 + \gamma g_1, w\rangle| \le \epsilon] = \mathbb{P}[|\langle m_1, w\rangle - \gamma g| \le \epsilon] \le \epsilon^2 / \gamma^2$$

Unitary invariance

anticoncentration

 $m_1 + \gamma g_1$

W

2'. Complex Anticoncentration

Cf. [Edelman'88] M=0

 $m_1 + \gamma g_1$

W

Lemma 2. For any complex $n \times n$ matrix M, and G with i.i.d. complex $N(0,1_{\mathbb{C}})$ entries:

 $\mathbb{P}[\sigma_n(M + \gamma G) \le \epsilon] \le n\epsilon^2/\gamma^2$

Proof Idea:

Let $M + \gamma G$ have columns $m_i + \gamma g_i$, Let $S = span\{m_i + \gamma g_i\}_{i>2}$

 $\mathbb{P}[dist(m_1 + \gamma g_1, S) \le \epsilon] = \mathbb{P}[|\langle m_1 + \gamma g_1, w\rangle| \le \epsilon] = \mathbb{P}[|\langle m_1, w\rangle - \gamma g| \le \epsilon] \le \epsilon^2 / \gamma^2$

Unitary invariance

anticoncentration

3. Expected Area of the Pseudospectrum

Lemma 2. For any complex $n \times n$ matrix M, **complex** Gaussian G: $\mathbb{P}[\sigma_n(M + \gamma G) \le \epsilon] \le n\epsilon^2/\gamma^2$

3. Expected Area of the Pseudospectrum

Lemma 2. For any complex $n \times n$ matrix M, **complex** Gaussian G: $\mathbb{P}[\sigma_n(M + \gamma G) \le \epsilon] \le n\epsilon^2/\gamma^2$

Lemma 3. For every fixed ball *B*, for every $\epsilon > 0$: $\mathbb{E}vol(\Lambda_{\epsilon}(A + \gamma G) \cap B) \leq \frac{n\epsilon^2}{\gamma^2} \cdot vol(B)$

<board>

Define the function

$$f_{\epsilon}(G) \coloneqq vol(\Lambda_{\epsilon}(A + \gamma G) \cap B)/\epsilon^2$$

Define the function

$$f_{\epsilon}(G) \coloneqq vol(\Lambda_{\epsilon}(A + \gamma G) \cap B)/\epsilon^2$$

Lemma 2 shows that

$$\liminf_{\epsilon \to 0} \mathbb{E} f_{\epsilon}(G) \le n/\gamma^2$$

Define the function

$$f_{\epsilon}(G) \coloneqq vol(\Lambda_{\epsilon}(A + \gamma G) \cap B)/\epsilon^2$$

Lemma 3 shows that

$$\liminf_{\epsilon \to 0} \mathbb{E} f_{\epsilon}(G) \le n/\gamma^2$$

By Fatou's lemma,

 $\mathbb{E}\liminf_{\epsilon\to 0} f_{\epsilon}(G) \le n/\gamma^2$

Define the function

$$f_{\epsilon}(G) \coloneqq vol(\Lambda_{\epsilon}(A + \gamma G) \cap B)/\epsilon^2$$

Lemma 3 shows that

$$\liminf_{\epsilon \to 0} \mathbb{E} f_{\epsilon}(G) \le n/\gamma^2$$

By Fatou's lemma,

$$\mathbb{E}\liminf_{\epsilon\to 0} f_{\epsilon}(G) \le n/\gamma^2$$

So by Lemma 1:

$$\mathbb{E} \pi \sum_{\lambda_i \in B} \kappa^2(\lambda_i) = \mathbb{E} \liminf_{\epsilon \to 0} f_{\epsilon}(G) \leq \frac{n}{\gamma^2} \cdot vol(B)$$

Recap of the Proof Let $M = A + \gamma G$ and B = D(0,3).

$$\mathbb{E} \sum_{\lambda_i \in B} \kappa(\lambda_i)^2 = \frac{1}{\pi} \cdot \mathbb{E} \liminf_{\epsilon \to 0} \frac{\operatorname{vol}(\Lambda_{\epsilon}(M) \cap B)}{\epsilon^2}$$
$$\leq \frac{1}{\pi} \cdot \liminf_{\epsilon \to 0} \mathbb{E} \frac{\operatorname{vol}(\Lambda_{\epsilon}(M) \cap B)}{\epsilon^2}$$
$$\leq \frac{\operatorname{9max} \mathbb{P}[z \in \Lambda_{\epsilon}(M)]}{\epsilon^2}$$
$$\leq 9n/\gamma^2$$

Phenomenon behind the result

Summary and Questions

Three related notions of spectral stability (κ_e , $\kappa(\lambda_i)$, Λ_ϵ) Can control global quantities by local singular values $\sigma_n(z - M)$ Exploited invariance and anticoncentration of complex Gaussian

Summary and Questions

Three related notions of spectral stability (κ_e , $\kappa(\lambda_i)$, Λ_ϵ) Can control global quantities by local singular values $\sigma_n(z - M)$ Exploited invariance and anticoncentration of complex Gaussian

- Does a real Gaussian fail?
- Dimension dependence in Theorem A. Dimension free bound?
- Derandomization of the perturbation
- Non-gaussian perturbations