Quantitative Diagonalizability

Part I: Three Measures of
Nonnormality

ϵ-pseudospectrum

$$
\Lambda_{\epsilon}(M):=\left\{z \in \mathbb{C}:\left\|(z-M)^{-1}\right\| \geq \epsilon^{-1}\right\}
$$

ϵ-pseudospectrum

$$
\begin{aligned}
\Lambda_{\epsilon}(M): & \left\{z \in \mathbb{C}:\left\|(z-M)^{-1}\right\| \geq \epsilon^{-1}\right\}_{\mathrm{L}} \\
& =\left\{z \in \mathbb{C}: \sigma_{n}(z-M) \leq \epsilon\right\} \\
& =\{z \in \mathbb{C}: z \in \operatorname{spec}(A+E),\|E\| \leq \epsilon\}
\end{aligned}
$$

ϵ-pseudospectrum

$$
\Lambda_{\epsilon}(M):=\left\{z \in \mathbb{C}:\left\|(z-M)^{-1}\right\| \geq \epsilon^{-1}\right\},
$$

For normal matrices, $\Lambda_{\epsilon}(M)=\Lambda_{0}(M)+D(0, \epsilon)$

Pseudospectrum of Toeplitz Example

ϵ-pseudospectrum

$$
\Lambda_{\epsilon}(M):=\left\{z \in \mathbb{C}:\left\|(z-M)^{-1}\right\| \geq \epsilon^{-1}\right\},
$$

e.g. discretization of pde from acoustics:

SPECTRA

AND
PSEUDOSPECTRA

The Behavior of Nonnormal

Matrices and Operators

ϵ-pseudospectrum

$$
\begin{aligned}
\Lambda_{\epsilon}(M):= & \left\{z \in \mathbb{C}:\left\|(z-M)^{-1}\right\| \geq \epsilon^{-1}\right\}_{\mathrm{tm}:} \\
& =\left\{z \in \mathbb{C}: \sigma_{n}(z-M) \leq \epsilon\right\} \\
& =\{z \in \mathbb{C}: z \in \operatorname{spec}(A+E),\|E\| \leq \epsilon\}
\end{aligned}
$$

\Lambda_{\epsilon}(M) \subset \Lambda_{0}(M)+\kappa_{e}(M) D(0, \epsilon)
\]

For distinct eigs $\Lambda_{\epsilon}(M)=\Lambda_{0}(M)+\mathrm{U}_{i} D\left(\lambda_{i}, \kappa\left(\lambda_{i}\right) \epsilon\right)+o(\epsilon)$

Part II: Davies' Conjecture

(with Jess Banks, Archit Kulkarni, Satyaki Mukherjee)

Diagonalization

$A \in \mathbb{C}^{n \times n}$ is diagonalizable if $A=V D V^{-1}$ for invertible V, diagonal D.
Every matrix is a limit of diagonalizable matrices.

Let $\kappa_{e}(A):=\|V\| \cdot\left\|V^{-1}\right\|$ be the eigenvector condition number of A.

Diagonalization

$A \in \mathbb{C}^{n \times n}$ is diagonalizable if $A=V D V^{-1}$ for invertible V, diagonal D.
Every matrix is a limit of diagonalizable matrices.

Let $\kappa_{e}(A):=\|V\| \cdot \| V^{-1}| |$ be the eigenvector condition number of A.

$$
\kappa_{e}(A)=1 \text { for normal, }
$$ ∞ for nondiagonalizable

Diagonalization

$A \in \mathbb{C}^{n \times n}$ is diagonalizable if $A=V D V^{-1}$ for invertible V, diagonal D.
Every matrix is a limit of diagonalizable matrices.

Let $\kappa_{e}(A):=\|V\| \cdot \| V^{-1}| |$ be the eigenvector condition number of A.

Question: Given a matrix A and $\delta>0$, what is $\min \left\{\kappa_{e}(A+E):\|E\| \leq \delta\right\}$?

Motivation: Computing Matrix Functions

Problem. Compute $f(A)$ for analytic function f, e.g. $f(z)=e^{z}, z^{p}$.

Motivation: Computing Matrix Functions

Problem. Compute $f(A)$ for analytic function f, e.g. $f(z)=e^{z}, z^{p}$.
Naïve Approach. $f(A)=V f(D) V^{-1}$. Highly unstable if $\kappa_{e}(A)$ is big.

Motivation: Computing Matrix Functions

Problem. Compute $f(A)$ for analytic function f, e.g. $f(z)=e^{z}, z^{p}$.
Naïve Approach. $f(A)=V f(D) V^{-1}$. Highly unstable if $\kappa_{e}(A)$ is big.
e.g. $n \times n$ Toeplitz, $\mathrm{n}=100$:

$$
\begin{aligned}
\mathbf{A}= & {\left[\begin{array}{cccc}
0 & 1 / 2 & & \\
-2 & 0 & \ddots & \\
& \ddots & \ddots & 1 / 2 \\
& & -2 & 0
\end{array}\right] } \\
& \kappa_{e}(A)=2^{n-1} \approx 10^{30}
\end{aligned}
$$

Motivation: Computing Matrix Functions

Problem. Compute $f(A)$ for analytic function f, e.g. $f(z)=e^{z}, z^{p}$.
Naïve Approach. $f(A)=V f(D) V^{-1}$. Highly unstable if $\kappa_{e}(A)$ is big.
e.g. $n \times n$ Toeplitz, $\mathrm{n}=100$:

$$
\begin{aligned}
\mathbf{A}= & {\left[\begin{array}{cccc}
0 & 1 / 2 & & \\
-2 & 0 & \ddots & \\
& \ddots & \ddots & 1 / 2 \\
& & -2 & 0
\end{array}\right] } \\
& \kappa_{e}(A)=2^{n-1} \approx 10^{30}
\end{aligned}
$$

Motivation: Computing Matrix Functions

Problem. Compute $f(A)$ for analytic function f, e.g. $f(z)=e^{z}, z^{p}$.
Naïve Approach. $f(A)=V f(D) V^{-1}$. Highly unstable if $\kappa_{e}(A)$ is big.
e.g. $n \times n$ Toeplitz, $\mathrm{n}=100$:

$$
\begin{aligned}
\mathbf{A}= & {\left[\begin{array}{cccc}
0 & 1 / 2 & & \\
-2 & 0 & \ddots & \\
& \ddots & \ddots & 1 / 2 \\
& & -2 & 0
\end{array}\right] } \\
& \kappa_{e}(A)=2^{n-1} \approx 10^{30}
\end{aligned}
$$

Empirically: A is close to a matrix with much better κ_{e}.

Idea. Approximate $f(A)$ by $f(A+E)$ for some small E.

Idea. Approximate $f(A)$ by $f(A+E)$ for some small E.

e.g. $f(A)=\sqrt{A}$

$E \quad=r a n d n(n) * d e l t a$
[V, D] =eig (A+E)
S = V*D.^(1/2)*inv(V)

Idea. Approximate $f(A)$ by $f(A+E)$ for some small E.

$$
\begin{aligned}
& \text { e.g. } f(A)=\sqrt{A} \\
& E=\text { randn }(n) \star \operatorname{delta} \\
& {[V, D]=\operatorname{eig}(A+E)} \\
& S=V^{*} D \cdot{ }^{\wedge}(1 / 2) \star \operatorname{inv}(V)
\end{aligned}
$$

Approximate Diagonalization

Theorem. [Davies'06] For every $A \in \mathbb{C}^{n \times n}$ with $\|A\| \leq 1$ and $\delta \in(0,1)$ there is a perturbation E such that

$$
\kappa_{e}(A+E) \leq C\left(\sqrt{\frac{n}{\delta}}\right)^{n-1}
$$

Approximate Diagonalization

Theorem. [Davies'06] For every $A \in \mathbb{C}^{n \times n}$ with $\|A\| \leq 1$ and $\delta \in(0,1)$ there is a perturbation E such that

$$
\kappa_{e}(A+E) \leq C\left(\sqrt{\frac{n}{\delta}}\right)^{n-1}
$$

Conjecture. For every $A \in \mathbb{C}^{n \times n}$ with $\|A\| \leq 1$ and $\delta \in(0,1)$ there is a perturbation E such that

$$
\kappa_{e}(A+E) \leq \frac{C_{n}}{\delta}
$$

Approximate Diagonalization

Theorem. [Davies'06] For every $A \in \mathbb{C}^{n \times n}$ with $\|A\| \leq 1$ and $\delta \in(0,1)$ there is a perturbation E such that

$$
\kappa_{e}(A+E) \leq C\left(\sqrt{\frac{n}{\delta}}\right)^{n-1}
$$

Conjecture. For every $A \in \mathbb{C}^{n \times n}$ with $\|A\| \leq 1$ and $\delta \in(0,1)$ there is a perturbation E such that

$$
\kappa_{e}(A+E) \leq \frac{C_{n}}{\delta}
$$

[Davies'06]: true for $n=3$ and for special case $A=J_{n}$, with $C_{n}=2$.

Main Result

Theorem A. For every $A \in \mathbb{C}^{n \times n}$ with $\|A\| \leq 1$ and $\delta \in(0,1)$ there is a perturbation E such that

$$
\kappa_{e}(A+E) \leq \frac{4 n^{3 / 2}}{\delta}
$$

Main Result

Theorem A. For every $A \in \mathbb{C}^{n \times n}$ with $\|A\| \leq 1$ and $\delta \in(0,1)$ there is a perturbation E such that

$$
\kappa_{e}(A+E) \leq \frac{4 n^{3 / 2}}{\delta}
$$

Implies every matrix has a $1 / \operatorname{poly}(n)$ perturbation with $\kappa_{e} \leq \operatorname{poly}(n)$

Main Result

Theorem A. For every $A \in \mathbb{C}^{n \times n}$ with $\|A\| \leq 1$ and $\delta \in(0,1)$ there is a perturbation E such that

$$
\kappa_{e}(A+E) \leq \frac{4 n^{3 / 2}}{\delta}
$$

Implies every matrix has a $1 / \operatorname{poly}(n)$ perturbation with $\kappa_{e} \leq \operatorname{poly}(n)$

Implied by a stronger probabilistic result on eigenvalue condition numbers.

Probabilistic Analysis of κ_{i}

Theorem B. Assume $\|A\| \leq 1$ and let G have i.i.d. complex standard Gaussian entries. Let $\lambda_{1}, \ldots \lambda_{n}$ be the eigenvalues of $A+\gamma G$.

Probabilistic Analysis of κ_{i}

Theorem B. Assume $\|A\| \leq 1$ and let G have i.i.d. complex standard Gaussian entries. Let $\lambda_{1}, \ldots \lambda_{n}$ be the eigenvalues of $A+\gamma G$

$$
z=x+i y \text { where } x, y \sim N\left(0, \frac{1}{2}\right)
$$

Probabilistic Analysis of κ_{i}

Theorem B. Assume $\|A\| \leq 1$ and let G have i.i.d. complex standard Gaussian entries. Let $\lambda_{1}, \ldots \lambda_{n}$ be the eigenvalues of $A+\gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$
\mathbb{E} \sum_{\lambda_{i} \in B} \kappa^{2}\left(\lambda_{i}\right) \leq \frac{n}{\pi \gamma^{2}} \cdot \operatorname{vol}(B)
$$

Probabilistic Analysis of κ_{i}

Theorem B. Assume $\|A\| \leq 1$ and let G have i.i.d. complex standard Gaussian entries. Let $\lambda_{1}, \ldots \lambda_{n}$ be the eigenvalues of $A+\gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$
\mathbb{E} \sum_{\lambda_{i} \in B} \kappa^{2}\left(\lambda_{i}\right) \leq \frac{n}{\pi \gamma^{2}} \cdot \operatorname{vol}(B)
$$

cf. Precise asymptotic results for $A=0$ [Chalker-Mehlig'98,...Bourgade-Dubach'18,Fyodorov'18] and $A=$ Toeplitz [Davies-Hager'08,...Basak-Paquette-Zeitouni'14-18, Sjostrand-Vogel'18]

Probabilistic Analysis of κ_{i}

Theorem B. Assume $\|A\| \leq 1$ and let G have i.i.d. complex standard Gaussian entries. Let $\lambda_{1}, \ldots \lambda_{n}$ be the eigenvalues of $A+\gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$
\mathbb{E} \sum_{\lambda_{i} \in B} \kappa^{2}\left(\lambda_{i}\right) \leq \frac{n}{\pi \gamma^{2}} \cdot \operatorname{vol}(B)
$$

cf. Precise asymptotic results for $A=0$ [Chalker-Mehlig'98,...Bourgade-Dubach'18,Fyodorov'18] and $A=$ Toeplitz [Davies-Hager'08,...Basak-Paquette-Zeitouni'14-18, Sjostrand-Vogel'18]
Remark: Bourgade-Dubach implies that Theorem B is sharp for $A=0$

Implication B->A

Theorem B. Assume $\|A\| \leq 1$ and let G have i.i.d. complex standard Gaussian entries. Let $\lambda_{1}, \ldots \lambda_{n}$ be the eigenvalues of $A+\gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$
\mathbb{E} \sum_{\lambda_{i} \in B} \kappa^{2}\left(\lambda_{i}\right) \leq \frac{n}{\pi \gamma^{2}} \cdot \operatorname{vol}(B)
$$

Implication B->A

Theorem B. Assume $\|A\| \leq 1$ and let G have i.i.d. complex standard Gaussian entries. Let $\lambda_{1}, \ldots \lambda_{n}$ be the eigenvalues of $A+\gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$
\mathbb{E} \sum_{\lambda_{i} \in B} \kappa^{2}\left(\lambda_{i}\right) \leq \frac{n}{\pi \gamma^{2}} \cdot \operatorname{vol}(B)
$$

Proof of Theorem A. Let $\gamma<1 / \sqrt{n}$. whp $\|A+\gamma G\| \leq 3$ so all $\lambda_{i} \in B=$ $D(0,3)$.

Implication B->A

Theorem B. Assume $\|A\| \leq 1$ and let G have i.i.d. complex standard Gaussian entries. Let $\lambda_{1}, \ldots \lambda_{n}$ be the eigenvalues of $A+\gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$
\mathbb{E} \sum_{\lambda_{i} \in B} \kappa^{2}\left(\lambda_{i}\right) \leq \frac{n}{\pi \gamma^{2}} \cdot \operatorname{vol}(B)
$$

Proof of Theorem A. Let $\gamma<1 / \sqrt{n}$. whp $\|A+\gamma G\| \leq 3$ so all $\lambda_{i} \in B=$ $D(0,3)$. Then with constant prob.

$$
\kappa_{e}(A+\gamma G) \leq \sqrt{n \cdot \sum_{\lambda_{i} \in B} \kappa^{2}\left(\lambda_{i}\right) \leq} \frac{O(n)}{\gamma}
$$

Implication B->A

Theorem B. Assume $\|A\| \leq 1$ and let G have i.i.d. complex standard Gaussian entries. Let $\lambda_{1}, \ldots \lambda_{n}$ be the eigenvalues of $A+\gamma G$. Then for any open ball $B \subset \mathbb{C}$:

$$
\mathbb{E} \sum_{\lambda_{i} \in B} \kappa^{2}\left(\lambda_{i}\right) \leq \frac{n}{\pi \gamma^{2}} \cdot \operatorname{vol}(B)
$$

Proof of Theorem A. Let $\gamma<1 / \sqrt{n}$. whp $\|A+\gamma G\| \leq 3$ so all $\lambda_{i} \in B=$ $D(0,3)$. Then with constant prob.

$$
\kappa_{e}(A+\gamma G) \leq \sqrt{n \cdot \sum_{\lambda_{i} \in B} \kappa^{2}\left(\lambda_{i}\right) \leq \frac{O(n)}{\gamma} \leq \frac{O\left(n^{3 / 2}\right)}{\delta}} \begin{aligned}
& \delta=\gamma \sqrt{n}
\end{aligned}
$$

Proof of Theorem B

1. Area of the pseudospectrum

Lemma 1: If M has distinct eigenvalues then for every open B :

$$
\pi \sum_{\lambda_{i} \in B} \kappa\left(\lambda_{i}\right)^{2}=\lim _{\epsilon \rightarrow 0} \frac{\operatorname{vol}\left(\Lambda_{\epsilon}(M) \cap B\right)}{\epsilon^{2}}
$$

<board>

1. Area of the pseudospectrum

Lemma 1: If M has distinct eigenvalues then for every open B :

$$
\pi \sum_{\lambda_{i} \in B} \kappa\left(\lambda_{i}\right)^{2}=\lim _{\epsilon \rightarrow 0} \inf \frac{\operatorname{vol}\left(\Lambda_{\epsilon}(M) \cap B\right)}{\epsilon^{2}}
$$

<board>

2. Real Anticoncentration

Theorem[Sankar-Spielman-Teng'06]: For any real $n \times n$ matrix M, and G with i.i.d. real $N(0,1)$ entries:

$$
\mathbb{P}\left[\sigma_{n}(M+\gamma G) \leq \epsilon\right] \leq C \sqrt{n} \epsilon / \gamma
$$

<board>

2. Real Anticoncentration

Theorem[Sankar-Spielman-Teng'06]: For any real $n \times n$ matrix M, and G with i.i.d. real $N(0,1)$ entries:

$$
\mathbb{P}\left[\sigma_{n}(M+\gamma G) \leq \epsilon\right] \leq C \sqrt{n} \epsilon / \gamma
$$

Proof Idea:

Let $M+\gamma G$ have columns $m_{i}+\gamma g_{i}$,
Let $S=\operatorname{span}\left\{m_{i}+\gamma g_{i}\right\}_{i>2}$

$$
\begin{aligned}
& \mathbb{P}\left[\operatorname{dist}\left(m_{1}+\gamma g_{1}, S\right) \leq \epsilon\right]=\mathbb{P}\left[\left|\left\langle m_{1}+\gamma g_{1}, w\right\rangle\right| \leq \epsilon\right] \\
& =\mathbb{P}\left[\left|\left\langle m_{1}, w\right\rangle-\gamma g\right| \leq \epsilon\right] \leq \epsilon / \gamma
\end{aligned}
$$

2'. Complex Anticoncentration

Lemma 2. For any complex $n \times n$ matrix M, and G with i.i.d. complex $N\left(0,1_{\mathbb{C}}\right)$ entries:

$$
\mathbb{P}\left[\sigma_{n}(M+\gamma G) \leq \epsilon\right] \leq n \epsilon^{2} / \gamma^{2}
$$

Proof Idea:

Let $M+\gamma G$ have columns $m_{i}+\gamma g_{i}$,
Let $S=\operatorname{span}\left\{m_{i}+\gamma g_{i}\right\}_{i>2}$

$$
\begin{aligned}
& \mathbb{P}\left[\operatorname{dist}\left(m_{1}+\gamma g_{1}, S\right) \leq \epsilon\right]=\mathbb{P}\left[\left|\left\langle m_{1}+\gamma g_{1}, w\right\rangle\right| \leq \epsilon\right] \\
& =\mathbb{P}\left[\left|\left\langle m_{1}, w\right\rangle-\gamma g\right| \leq \epsilon\right] \leq \epsilon^{2} / \gamma^{2}
\end{aligned}
$$

Unitary invariance
anticoncentration

2'. Complex Anticoncentration

Lemma 2. For any complex $n \times n$ matrix M, and G with i.i.d. complex $N\left(0,1_{\mathbb{C}}\right)$ entries:

$$
\mathbb{P}\left[\sigma_{n}(M+\gamma G) \leq \epsilon\right] \leq n \epsilon^{2} / \gamma^{2}
$$

Proof Idea:

Let $M+\gamma G$ have columns $m_{i}+\gamma g_{i}$,
Let $S=\operatorname{span}\left\{m_{i}+\gamma g_{i}\right\}_{i>2}$

$$
\begin{aligned}
& \mathbb{P}\left[\operatorname{dist}\left(m_{1}+\gamma g_{1}, S\right) \leq \epsilon\right]=\mathbb{P}\left[\left|\left\langle m_{1}+\gamma g_{1}, w\right\rangle\right| \leq \epsilon\right] \\
& =\mathbb{P}\left[\left|\left\langle m_{1}, w\right\rangle-\gamma g\right| \leq \epsilon\right] \leq \epsilon^{2} / \gamma^{2}
\end{aligned}
$$

3. Expected Area of the Pseudospectrum

Lemma 2. For any complex $n \times n$ matrix M, complex Gaussian G :

$$
\mathbb{P}\left[\sigma_{n}(M+\gamma G) \leq \epsilon\right] \leq n \epsilon^{2} / \gamma^{2}
$$

3. Expected Area of the Pseudospectrum

Lemma 2. For any complex $n \times n$ matrix M, complex Gaussian G :

$$
\mathbb{P}\left[\sigma_{n}(M+\gamma G) \leq \epsilon\right] \leq n \epsilon^{2} / \gamma^{2}
$$

Lemma 3. For every fixed ball B, for every $\epsilon>0$:

$$
\mathbb{E} \operatorname{vol}\left(\Lambda_{\epsilon}(A+\gamma G) \cap B\right) \leq \frac{n \epsilon^{2}}{\gamma^{2}} \cdot \operatorname{vol}(B)
$$

<board>

4. Expected Limiting Area of the Pseudospectrum

Define the function

$$
f_{\epsilon}(G):=\operatorname{vol}\left(\Lambda_{\epsilon}(A+\gamma G) \cap B\right) / \epsilon^{2}
$$

4. Expected Limiting Area of the Pseudospectrum

Define the function

$$
f_{\epsilon}(G):=\operatorname{vol}\left(\Lambda_{\epsilon}(A+\gamma G) \cap B\right) / \epsilon^{2}
$$

Lemma 2 shows that

$$
\liminf _{\epsilon \rightarrow 0} \mathbb{E} f_{\epsilon}(G) \leq n / \gamma^{2}
$$

4. Expected Limiting Area of the Pseudospectrum

Define the function

$$
f_{\epsilon}(G):=\operatorname{vol}\left(\Lambda_{\epsilon}(A+\gamma G) \cap B\right) / \epsilon^{2}
$$

Lemma 3 shows that

$$
\liminf _{\epsilon \rightarrow 0} \mathbb{E} f_{\epsilon}(G) \leq n / \gamma^{2}
$$

By Fatou's lemma,

$$
\mathbb{E} \lim _{\epsilon \rightarrow 0} \inf f_{\epsilon}(G) \leq n / \gamma^{2}
$$

4. Expected Limiting Area of the Pseudospectrum

Define the function

$$
f_{\epsilon}(G):=\operatorname{vol}\left(\Lambda_{\epsilon}(A+\gamma G) \cap B\right) / \epsilon^{2}
$$

Lemma 3 shows that

$$
\liminf _{\epsilon \rightarrow 0} \mathbb{E} f_{\epsilon}(G) \leq n / \gamma^{2}
$$

By Fatou's lemma,

$$
\mathbb{E} \lim _{\epsilon \rightarrow 0} \inf f_{\epsilon}(G) \leq n / \gamma^{2}
$$

So by Lemma 1:

$$
\mathbb{E} \pi \sum_{\lambda_{i} \in B} \kappa^{2}\left(\lambda_{i}\right)=\mathbb{E} \liminf _{\epsilon \rightarrow 0} f_{\epsilon}(G) \leq \frac{n}{\gamma^{2}} \cdot \operatorname{vol}(B)
$$

Recap of the Proof

Let $M=A+\gamma G$ and $B=D(0,3)$.

$$
\begin{aligned}
\mathbb{E} \sum_{\lambda_{i} \in B} \kappa\left(\lambda_{i}\right)^{2} & =\frac{1}{\pi} \cdot \mathbb{E} \lim _{\epsilon \rightarrow 0} \inf \frac{\operatorname{vol}\left(\Lambda_{\epsilon}(M) \cap B\right)}{\epsilon^{2}} \\
& \leq \frac{1}{\pi} \cdot \liminf _{\epsilon \rightarrow 0} \mathbb{E} \frac{\operatorname{vol}\left(\Lambda_{\epsilon}(M) \cap B\right)}{\epsilon^{2}} \\
& \leq \frac{9 \max _{z \in B} \mathbb{P}\left[z \in \Lambda_{\epsilon}(M)\right]}{\epsilon^{2}} \\
& \leq 9 n / \gamma^{2}
\end{aligned}
$$

Phenomenon behind the result

Summary and Questions

Three related notions of spectral stability $\left(\kappa_{e}, \kappa\left(\lambda_{i}\right), \Lambda_{\epsilon}\right)$
Can control global quantities by local singular values $\sigma_{n}(z-M)$
Exploited invariance and anticoncentration of complex Gaussian

Summary and Questions

Three related notions of spectral stability $\left(\kappa_{e}, \kappa\left(\lambda_{i}\right), \Lambda_{\epsilon}\right)$
Can control global quantities by local singular values $\sigma_{n}(z-M)$
Exploited invariance and anticoncentration of complex Gaussian

- Does a real Gaussian fail?
- Dimension dependence in Theorem A. Dimension free bound?
- Derandomization of the perturbation
- Non-gaussian perturbations

