Continued fractions, Chen-Stein method and extreme value theory

Parthanil Roy, Indian Statistical Institute Joint work with Anish Ghosh and Maxim Kirsebom

April 25, 2019

UNITY IN DIVERSITY

Regular continued fractions

$\frac{7}{24}$

Regular continued fractions

$$
\frac{7}{24}=\frac{1}{24 / 7}
$$

Regular continued fractions

$$
\frac{7}{24}=\frac{1}{24 / 7}=\frac{1}{3+\frac{3}{7}}
$$

Regular continued fractions

$$
\frac{7}{24}=\frac{1}{24 / 7}=\frac{1}{3+\frac{3}{7}}=\frac{1}{3+\frac{1}{7 / 3}}
$$

Regular continued fractions

$$
\frac{7}{24}=\frac{1}{24 / 7}=\frac{1}{3+\frac{3}{7}}=\frac{1}{3+\frac{1}{7 / 3}}=\frac{1}{3+\frac{1}{2+\frac{1}{3}}}
$$

Regular continued fractions

$$
\frac{7}{24}=\frac{1}{24 / 7}=\frac{1}{3+\frac{3}{7}}=\frac{1}{3+\frac{1}{7 / 3}}=\frac{1}{3+\frac{1}{2+\frac{1}{3}}}:=[3,2,3]
$$

Regular continued fractions

$$
\frac{7}{24}=\frac{1}{24 / 7}=\frac{1}{3+\frac{3}{7}}=\frac{1}{3+\frac{1}{7 / 3}}=\frac{1}{3+\frac{1}{2+\frac{1}{3}}}:=[3,2,3]
$$

Note that $7>3>1$.

Regular continued fractions

$$
\frac{7}{24}=\frac{1}{24 / 7}=\frac{1}{3+\frac{3}{7}}=\frac{1}{3+\frac{1}{7 / 3}}=\frac{1}{3+\frac{1}{2+\frac{1}{3}}}:=[3,2,3]
$$

Note that $7>3>1$.

Therefore by Euclidean Algorithm, any rational number

$$
\omega=p / q \in(0,1)
$$

(with $\operatorname{gcd}(p, q)=1$) will have a terminating (regular) continued fraction expansion.

Conversely ...

Whenever $A_{1}, A_{2}, A_{3}, A_{4} \in \mathbb{N}$,

$$
\left[A_{1}, A_{2}, A_{3}, A_{4}\right]:=\frac{1}{A_{1}+\frac{1}{A_{2}+\frac{1}{A_{3}+\frac{1}{A_{4}}}}} \in(0,1)
$$

is a rational number.

Conversely ...

Whenever $A_{1}, A_{2}, A_{3}, A_{4} \in \mathbb{N}$,

$$
\left[A_{1}, A_{2}, A_{3}, A_{4}\right]:=\frac{1}{A_{1}+\frac{1}{A_{2}+\frac{1}{A_{3}+\frac{1}{A_{4}}}}} \in(0,1)
$$

is a rational number.

More generally, by induction on n,

$$
\omega=\left[A_{1}, A_{2}, \ldots A_{n}\right]
$$

(with $A_{1}, A_{2}, \ldots A_{n} \in \mathbb{N}$) is a rational number in $(0,1)$.

Non-terminating continued fraction expansion

Theorem
A number $\omega \in(0,1)$ has a unique non-terminating continued fraction expansion

$$
\omega=\frac{1}{A_{1}+\frac{1}{A_{2}+\frac{1}{A_{3}+\ldots}}}=:\left[A_{1}, A_{2}, A_{3}, \ldots\right]
$$

(with each $A_{i} \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$.

Non-terminating continued fraction expansion

Theorem

A number $\omega \in(0,1)$ has a unique non-terminating continued fraction expansion

$$
\omega=\frac{1}{A_{1}+\frac{1}{A_{2}+\frac{1}{A_{3}+\cdots}}}=:\left[A_{1}, A_{2}, A_{3}, \ldots\right]
$$

(with each $A_{i} \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$. Furthermore in this case, the $n^{\text {th }}$ truncate $\left[A_{1}, A_{2}, \ldots A_{n}\right] \rightarrow \omega$ as $n \rightarrow \infty$.

Non-terminating continued fraction expansion

Theorem

A number $\omega \in(0,1)$ has a unique non-terminating continued fraction expansion

$$
\omega=\frac{1}{A_{1}+\frac{1}{A_{2}+\frac{1}{A_{3}+\ldots}}}=:\left[A_{1}, A_{2}, A_{3}, \ldots\right]
$$

(with each $A_{i} \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$. Furthermore in this case, the $n^{\text {th }}$ truncate $\left[A_{1}, A_{2}, \ldots A_{n}\right] \rightarrow \omega$ as $n \rightarrow \infty$.

Canonical rational approximation: $\omega \approx\left[A_{1}, A_{2}, \ldots A_{n}\right]$.

Non-terminating continued fraction expansion

Theorem

A number $\omega \in(0,1)$ has a unique non-terminating continued fraction expansion

$$
\omega=\frac{1}{A_{1}+\frac{1}{A_{2}+\frac{1}{A_{3}+\cdots}}}=:\left[A_{1}, A_{2}, A_{3}, \ldots\right]
$$

(with each $A_{i} \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$. Furthermore in this case, the $n^{\text {th }}$ truncate $\left[A_{1}, A_{2}, \ldots A_{n}\right] \rightarrow \omega$ as $n \rightarrow \infty$.

Canonical rational approximation: $\omega \approx\left[A_{1}, A_{2}, \ldots A_{n}\right]$.
Examples: $\pi \approx \frac{22}{7}$

Non-terminating continued fraction expansion

Theorem
A number $\omega \in(0,1)$ has a unique non-terminating continued fraction expansion

$$
\omega=\frac{1}{A_{1}+\frac{1}{A_{2}+\frac{1}{A_{3}+\cdots}}}=:\left[A_{1}, A_{2}, A_{3}, \ldots\right]
$$

(with each $A_{i} \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$. Furthermore in this case, the $n^{\text {th }}$ truncate $\left[A_{1}, A_{2}, \ldots A_{n}\right] \rightarrow \omega$ as $n \rightarrow \infty$.

Canonical rational approximation: $\omega \approx\left[A_{1}, A_{2}, \ldots A_{n}\right]$.
Examples: $\pi \approx \frac{22}{7}$ and $\pi \approx \frac{355}{113}$.

Why continued fractions?

Continued fractions are important in algebra, analysis, combinatorics, ergodic theory, geometry, number theory, probability, etc..

See, for example, Khintchine (1964).

For an irrational $\omega \in(0,1)$

$$
\begin{aligned}
\omega=\frac{1}{1 / \omega}=\frac{1}{[1 / \omega]+\{1 / \omega\}} & =: \frac{1}{A_{1}(\omega)+T(\omega)} \\
& =\frac{1}{A_{1}(\omega)+\frac{1}{A_{1}(T(\omega))+T^{2}(\omega)}} \\
& =: \frac{1}{A_{1}(\omega)+\frac{1}{A_{2}(\omega)+T^{2}(\omega)}} \\
& =\cdots
\end{aligned}
$$

The Gauss map

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}$.

The Gauss map

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T: \Omega \rightarrow \Omega$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by

$$
T(\omega)=\{1 / \omega\}(\text { Gauss map }) \quad \text { and } \quad A_{1}(\omega)=[1 / \omega]
$$

for irrational $\omega \in \Omega$

The Gauss map

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T: \Omega \rightarrow \Omega$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by

$$
T(\omega)=\{1 / \omega\}(\text { Gauss map }) \quad \text { and } \quad A_{1}(\omega)=[1 / \omega]
$$

for irrational $\omega \in \Omega$ (and any way you like for rational $\omega \in \Omega$).

The Gauss map

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T: \Omega \rightarrow \Omega$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by

$$
T(\omega)=\{1 / \omega\} \text { (Gauss map) } \quad \text { and } \quad A_{1}(\omega)=[1 / \omega]
$$

for irrational $\omega \in \Omega$ (and any way you like for rational $\omega \in \Omega$).

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega):=A_{1}\left(T^{j}(\omega)\right), \omega \in \Omega$.

The Gauss map

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T: \Omega \rightarrow \Omega$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by

$$
T(\omega)=\{1 / \omega\} \text { (Gauss map) } \quad \text { and } \quad A_{1}(\omega)=[1 / \omega]
$$

for irrational $\omega \in \Omega$ (and any way you like for rational $\omega \in \Omega$).

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega):=A_{1}\left(T^{j}(\omega)\right), \omega \in \Omega$. Then for almost all $\omega \in \Omega$ (namely, for all $\omega \in \Omega \backslash \mathbb{Q}$),

$$
\omega=\left[A_{1}(\omega), A_{2}(\omega), A_{3}(\omega), \ldots\right] .
$$

The Gauss map

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T: \Omega \rightarrow \Omega$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by

$$
T(\omega)=\{1 / \omega\} \text { (Gauss map) } \quad \text { and } \quad A_{1}(\omega)=[1 / \omega]
$$

for irrational $\omega \in \Omega$ (and any way you like for rational $\omega \in \Omega$).

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega):=A_{1}\left(T^{j}(\omega)\right), \omega \in \Omega$. Then for almost all $\omega \in \Omega$ (namely, for all $\omega \in \Omega \backslash \mathbb{Q}$),

$$
\omega=\left[A_{1}(\omega), A_{2}(\omega), A_{3}(\omega), \ldots\right] .
$$

Quick Observation: T, A_{1} measurable \Rightarrow each A_{n} measurable.

Gauss dynamical system

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T: \Omega \rightarrow \Omega$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by $T(\omega)=\{1 / \omega\}$ (Gauss map) and $A_{1}(\omega)=[1 / \omega]$.

Gauss dynamical system

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T: \Omega \rightarrow \Omega$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by $T(\omega)=\{1 / \omega\}$ (Gauss map) and $A_{1}(\omega)=[1 / \omega]$.

Bad News: T does not preserve the Lebesgue measure on $(0,1)$.

Gauss dynamical system

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T: \Omega \rightarrow \Omega$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by $T(\omega)=\{1 / \omega\}$ (Gauss map) and $A_{1}(\omega)=[1 / \omega]$.

Bad News: T does not preserve the Lebesgue measure on $(0,1)$.

Define a probability measure P (Gauss measure) on (Ω, \mathcal{A}) by

$$
P(A)=\int_{A} \frac{1}{(1+x) \log 2} d x
$$

Gauss dynamical system

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T: \Omega \rightarrow \Omega$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by

$$
T(\omega)=\{1 / \omega\} \text { (Gauss map) } \quad \text { and } \quad A_{1}(\omega)=[1 / \omega] .
$$

Bad News: T does not preserve the Lebesgue measure on $(0,1)$.

Define a probability measure P (Gauss measure) on (Ω, \mathcal{A}) by

$$
P(A)=\int_{A} \frac{1}{(1+x) \log 2} d x .
$$

Theorem (Gauss)
T preserves P,

Gauss dynamical system

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T: \Omega \rightarrow \Omega$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by

$$
T(\omega)=\{1 / \omega\} \text { (Gauss map) } \quad \text { and } \quad A_{1}(\omega)=[1 / \omega] .
$$

Bad News: T does not preserve the Lebesgue measure on $(0,1)$.

Define a probability measure P (Gauss measure) on (Ω, \mathcal{A}) by

$$
P(A)=\int_{A} \frac{1}{(1+x) \log 2} d x .
$$

Theorem (Gauss)
T preserves P, i.e., for all $A \in \mathcal{A}, P(A)=P\left(T^{-1}(A)\right)$.

Gauss dynamical system

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}$. Define $T: \Omega \rightarrow \Omega$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by

$$
T(\omega)=\{1 / \omega\} \text { (Gauss map) } \quad \text { and } \quad A_{1}(\omega)=[1 / \omega] .
$$

Bad News: T does not preserve the Lebesgue measure on $(0,1)$.

Define a probability measure P (Gauss measure) on (Ω, \mathcal{A}) by

$$
P(A)=\int_{A} \frac{1}{(1+x) \log 2} d x .
$$

Theorem (Gauss)
T preserves P, i.e., for all $A \in \mathcal{A}, P(A)=P\left(T^{-1}(A)\right)$.
$(\Omega, \mathcal{A}, P, T)=$ the Gauss dynamical system.

A reformulation of Gauss's theorem

Exercise (in Probability Theory II): Suppose X is a random variable having probability density function

$$
f_{x}(x)=\frac{1}{(1+x) \log 2}, \quad x \in(0,1)
$$

Then show that $\{1 / X\} \stackrel{\mathcal{L}}{=} X$.

A stationary process

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}, P(d x)=((1+x) \log 2)^{-1} d x$.

A stationary process

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}, P(d x)=((1+x) \log 2)^{-1} d x$. Define $T: \Omega \rightarrow \Omega$ by $T(\omega)=\{1 / \omega\}$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by $A_{1}(\omega)=[1 / \omega]$.

A stationary process

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}, P(d x)=((1+x) \log 2)^{-1} d x$. Define $T: \Omega \rightarrow \Omega$ by $T(\omega)=\{1 / \omega\}$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by $A_{1}(\omega)=[1 / \omega]$.

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega):=A_{1}\left(T^{j}(\omega)\right), \omega \in \Omega$.

A stationary process

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}, P(d x)=((1+x) \log 2)^{-1} d x$. Define $T: \Omega \rightarrow \Omega$ by $T(\omega)=\{1 / \omega\}$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by $A_{1}(\omega)=[1 / \omega]$.

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega):=A_{1}\left(T^{j}(\omega)\right), \omega \in \Omega$.

This defines a sequence $\left\{A_{n}: \Omega \rightarrow \mathbb{N}\right\}_{n \geq 1}$ of positive integer-valued random variables on the probability space (Ω, \mathcal{A}, P).

A stationary process

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}, P(d x)=\left((1+x) \log 2^{-1} d x\right.$. Define $T: \Omega \rightarrow \Omega$ by $T(\omega)=\{1 / \omega\}$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by $A_{1}(\omega)=[1 / \omega]$.

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega):=A_{1}\left(T^{j}(\omega)\right), \omega \in \Omega$.

This defines a sequence $\left\{A_{n}: \Omega \rightarrow \mathbb{N}\right\}_{n \geq 1}$ of positive integer-valued random variables on the probability space (Ω, \mathcal{A}, P).
$A_{n}=n^{\text {th }}$ digit in the regular continued fraction expansion of a random number $\omega \in(0,1)$ chosen according to the law P.

A stationary process

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}, P(d x)=((1+x) \log 2)^{-1} d x$. Define $T: \Omega \rightarrow \Omega$ by $T(\omega)=\{1 / \omega\}$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by $A_{1}(\omega)=[1 / \omega]$.

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega):=A_{1}\left(T^{j}(\omega)\right), \omega \in \Omega$.

This defines a sequence $\left\{A_{n}: \Omega \rightarrow \mathbb{N}\right\}_{n \geq 1}$ of positive integer-valued random variables on the probability space (Ω, \mathcal{A}, P).
$A_{n}=n^{\text {th }}$ digit in the regular continued fraction expansion of a random number $\omega \in(0,1)$ chosen according to the law P.
T preserves $P \Rightarrow\left\{A_{n}\right\}$ is a strictly stationary process.

A stationary process

Take $\Omega=(0,1), \mathcal{A}=\mathcal{B}_{(0,1)}, P(d x)=((1+x) \log 2)^{-1} d x$. Define $T: \Omega \rightarrow \Omega$ by $T(\omega)=\{1 / \omega\}$ and $A_{1}: \Omega \rightarrow \mathbb{N}$ by $A_{1}(\omega)=[1 / \omega]$.

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega):=A_{1}\left(T^{j}(\omega)\right), \omega \in \Omega$.

This defines a sequence $\left\{A_{n}: \Omega \rightarrow \mathbb{N}\right\}_{n \geq 1}$ of positive integer-valued random variables on the probability space (Ω, \mathcal{A}, P).
$A_{n}=n^{\text {th }}$ digit in the regular continued fraction expansion of a random number $\omega \in(0,1)$ chosen according to the law P.
T preserves $P \Rightarrow\left\{A_{n}\right\}$ is a strictly stationary process. In particular, $A_{1}, A_{2}, A_{3}, \ldots$ are identically distributed.

Two easy observations

- Direct Computation: For all $m \in \mathbb{N}$,

$$
P\left(A_{1} \geq m\right)=\frac{1}{\log 2} \log \left(1+\frac{1}{m}\right)
$$

Two easy observations

- Direct Computation: For all $m \in \mathbb{N}$,

$$
P\left(A_{1} \geq m\right)=\frac{1}{\log 2} \log \left(1+\frac{1}{m}\right) \sim \frac{1}{m \log 2} \quad(\text { as } m \rightarrow \infty) .
$$

Two easy observations

- Direct Computation: For all $m \in \mathbb{N}$,

$$
P\left(A_{1} \geq m\right)=\frac{1}{\log 2} \log \left(1+\frac{1}{m}\right) \sim \frac{1}{m \log 2} \quad(\text { as } m \rightarrow \infty)
$$

- For all $u>0$,

$$
P\left(\frac{A_{1} \log 2}{n}>u\right)=P\left(A_{1} \geq\left\lceil\frac{u n}{\log 2}\right\rceil\right) \sim \frac{1}{u n}
$$

as $n \rightarrow \infty$.

Two easy observations

- Direct Computation: For all $m \in \mathbb{N}$,

$$
P\left(A_{1} \geq m\right)=\frac{1}{\log 2} \log \left(1+\frac{1}{m}\right) \sim \frac{1}{m \log 2} \quad(\text { as } m \rightarrow \infty)
$$

- For all $u>0$,

$$
P\left(\frac{A_{1} \log 2}{n}>u\right)=P\left(A_{1} \geq\left\lceil\frac{u n}{\log 2}\right\rceil\right) \sim \frac{1}{u n}
$$

as $n \rightarrow \infty$. In particular,

$$
n P\left(\frac{A_{1} \log 2}{n}>u\right) \rightarrow u^{-1}
$$

(A_{1} is regularly varying with index 1).

If $A_{1}, A_{2}, A_{3}, \ldots$ were independent

then

$$
\mathbb{1}_{\left(A_{1} \log 2>\text { un }\right)}, \mathbb{1}_{\left(A_{2} \log 2>u n\right)}, \mathbb{1}_{\left(A_{3} \log 2>u n\right)}, \ldots \stackrel{i i d}{\sim} \operatorname{Ber}\left(p_{n}\right),
$$

where $p_{n}=P\left(A_{1} \log 2>u n\right)$

If $A_{1}, A_{2}, A_{3}, \ldots$ were independent

then

$$
\mathbb{1}_{\left(A_{1} \log 2>\text { un }\right)}, \mathbb{1}_{\left(A_{2} \log 2>u n\right)}, \mathbb{1}_{\left(A_{3} \log 2>u n\right)}, \ldots \stackrel{i i d}{\sim} \operatorname{Ber}\left(p_{n}\right),
$$

where $p_{n}=P\left(A_{1} \log 2>u n\right) \sim \frac{1}{u n}$.

If $A_{1}, A_{2}, A_{3}, \ldots$ were independent

then

$$
\mathbb{1}_{\left(A_{1} \log 2>\text { un }\right)}, \mathbb{1}_{\left(A_{2} \log 2>u n\right)}, \mathbb{1}_{\left(A_{3} \log 2>\text { un }\right)}, \ldots \stackrel{i i d}{\sim} \operatorname{Ber}\left(p_{n}\right),
$$

where $p_{n}=P\left(A_{1} \log 2>u n\right) \sim \frac{1}{u n}$.

Therefore for all $u>0$,

$$
\mathcal{E}_{n}^{u}:=\#\left\{1 \leq j \leq n: A_{j} \log 2>u n\right\}
$$

If $A_{1}, A_{2}, A_{3}, \ldots$ were independent

then

$$
\mathbb{1}_{\left(A_{1} \log 2>\text { un }\right)}, \mathbb{1}_{\left(A_{2} \log 2>u n\right)}, \mathbb{1}_{\left(A_{3} \log 2>u n\right)}, \ldots \stackrel{i i d}{\sim} \operatorname{Ber}\left(p_{n}\right),
$$

where $p_{n}=P\left(A_{1} \log 2>u n\right) \sim \frac{1}{u n}$.

Therefore for all $u>0$,

$$
\mathcal{E}_{n}^{u}:=\#\left\{1 \leq j \leq n: A_{j} \log 2>u n\right\}=\sum_{j=1}^{n} \mathbb{1}_{\left(A_{j} \log 2>u n\right)}
$$

If $A_{1}, A_{2}, A_{3}, \ldots$ were independent

then

$$
\mathbb{1}_{\left(A_{1} \log 2>\text { un }\right)}, \mathbb{1}_{\left(A_{2} \log 2>u n\right)}, \mathbb{1}_{\left(A_{3} \log 2>u n\right)}, \ldots \stackrel{i i d}{\sim} \operatorname{Ber}\left(p_{n}\right)
$$

where $p_{n}=P\left(A_{1} \log 2>u n\right) \sim \frac{1}{u n}$.

Therefore for all $u>0$,

$$
\mathcal{E}_{n}^{u}:=\#\left\{1 \leq j \leq n: A_{j} \log 2>u n\right\}=\sum_{j=1}^{n} \mathbb{1}_{\left(A_{j} \log 2>u n\right)} \sim \operatorname{Bin}\left(n, p_{n}\right)
$$

If $A_{1}, A_{2}, A_{3}, \ldots$ were independent

then

$$
\mathbb{1}_{\left(A_{1} \log 2>u n\right)}, \mathbb{1}_{\left(A_{2} \log 2>u n\right)}, \mathbb{1}_{\left(A_{3} \log 2>u n\right)}, \ldots \stackrel{i i d}{\sim} \operatorname{Ber}\left(p_{n}\right),
$$

where $p_{n}=P\left(A_{1} \log 2>u n\right) \sim \frac{1}{u n}$.

Therefore for all $u>0$,

$$
\begin{aligned}
& \mathcal{E}_{n}^{u}:=\#\left\{1 \leq j \leq n: A_{j} \log 2>u n\right\}=\sum_{j=1}^{n} \mathbb{1}_{\left(A_{j} \log 2>u n\right)} \sim \operatorname{Bin}\left(n, p_{n}\right) \\
& \quad \xrightarrow{\mathcal{L}} \mathcal{E}_{\infty}^{u} \sim \operatorname{Poi}\left(u^{-1}\right)
\end{aligned}
$$

as $n \rightarrow \infty$.

Doeblin-losifescu asymptotics

Theorem (Doeblin (1940), Iosifescu (1977))
For all $u>0$,

$$
\mathcal{E}_{n}^{u}:=\#\left\{1 \leq j \leq n: A_{j} \log 2>u n\right\} \xrightarrow{\mathcal{L}} \mathcal{E}_{\infty}^{u} \sim \operatorname{Poi}\left(u^{-1}\right)
$$

as $n \rightarrow \infty$.

Doeblin-losifescu asymptotics

Theorem (Doeblin (1940), losifescu (1977))

For all $u>0$,

$$
\mathcal{E}_{n}^{u}:=\#\left\{1 \leq j \leq n: A_{j} \log 2>u n\right\} \xrightarrow{\mathcal{L}} \mathcal{E}_{\infty}^{u} \sim \operatorname{Poi}\left(u^{-1}\right)
$$

as $n \rightarrow \infty$.

Corollary (Main result of Galambos (1972))
Let $M_{n}^{(1)}:=\max \left\{A_{i} \log 2: 1 \leq 1 \leq n\right\}, n \in \mathbb{N}$. Then for all $u>0$,

$$
P\left(\frac{M_{n}^{(1)}}{n} \leq u\right) \rightarrow e^{-u^{-1}}
$$

as $n \rightarrow \infty$.

The main question

Theorem (Doeblin (1940), losifescu (1977))

For all $u>0$,
(DI) $\quad \mathcal{E}_{n}^{u}:=\#\left\{1 \leq j \leq n: A_{j} \log 2>u n\right\} \xrightarrow{\mathcal{L}} \mathcal{E}_{\infty}^{u} \sim \operatorname{Poi}\left(u^{-1}\right)$
as $n \rightarrow \infty$.

Question

What is the rate of convergence in ($D I$)?

Why do we care?

Why do we care?

- Can estimate the rate of convergence of scaled maxima sequence $M_{n}^{(1)} / n$ (as in Galambos (1972))

Why do we care?

- Can estimate the rate of convergence of scaled maxima sequence $M_{n}^{(1)} / n$ (as in Galambos (1972)) - significantly improves a result of Philipp (1976).

Why do we care?

- Can estimate the rate of convergence of scaled maxima sequence $M_{n}^{(1)} / n$ (as in Galambos (1972)) - significantly improves a result of Philipp (1976).
- Rate of convergence for the scaled $k^{t h}$ maxima for any $k \in \mathbb{N}$

Why do we care?

- Can estimate the rate of convergence of scaled maxima sequence $M_{n}^{(1)} / n$ (as in Galambos (1972)) - significantly improves a result of Philipp (1976).
- Rate of convergence for the scaled $k^{t h}$ maxima for any $k \in \mathbb{N}$ (uniform over k).

Why do we care?

- Can estimate the rate of convergence of scaled maxima sequence $M_{n}^{(1)} / n$ (as in Galambos (1972)) - significantly improves a result of Philipp (1976).
- Rate of convergence for the scaled $k^{t h}$ maxima for any $k \in \mathbb{N}$ (uniform over k).
- A tiny detour of our proof recovers a result of Tyran-Kamińska (2010) on the weak convergence of the corresponding extremal point process.

Why do we care?

- Can estimate the rate of convergence of scaled maxima sequence $M_{n}^{(1)} / n$ (as in Galambos (1972)) - significantly improves a result of Philipp (1976).
- Rate of convergence for the scaled $k^{t h}$ maxima for any $k \in \mathbb{N}$ (uniform over k).
- A tiny detour of our proof recovers a result of Tyran-Kamińska (2010) on the weak convergence of the corresponding extremal point process. (Inspired by Chiarini, Cipriani and Hazra (2015).)

Why do we care?

- Can estimate the rate of convergence of scaled maxima sequence $M_{n}^{(1)} / n$ (as in Galambos (1972)) - significantly improves a result of Philipp (1976).
- Rate of convergence for the scaled $k^{t h}$ maxima for any $k \in \mathbb{N}$ (uniform over k).
- A tiny detour of our proof recovers a result of Tyran-Kamińska (2010) on the weak convergence of the corresponding extremal point process. (Inspired by Chiarini, Cipriani and Hazra (2015).)
- Rate of convergence of the scaled maxima for the geodesic flow on the modular surface.

The geodesic flow on the modular surface

The group $S L_{2}(\mathbb{Z}):=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}$ acts isometrically on $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ by rational transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d} .
$$

The geodesic flow on the modular surface

The group $S L_{2}(\mathbb{Z}):=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}$ acts isometrically on $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{lm}(z)>0\}$ by rational transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d} .
$$

Series (1981, 1985): Connected the geodesic flow on $M=\mathbb{H} / S L_{2}(\mathbb{Z})$ with Gauss dynamical system using a symbolic dynamics.

The geodesic flow on the modular surface

The group $S L_{2}(\mathbb{Z}):=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}$ acts isometrically on $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{lm}(z)>0\}$ by rational transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d} .
$$

Series (1981, 1985): Connected the geodesic flow on $M=\mathbb{H} / S L_{2}(\mathbb{Z})$ with Gauss dynamical system using a symbolic dynamics.

Pollicott (2009): Used this connection to find the weak limit of the normalized maxima of the geodesic flow on M.

The geodesic flow on the modular surface

The group $S L_{2}(\mathbb{Z}):=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}$ acts isometrically on $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{lm}(z)>0\}$ by rational transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d} .
$$

Series (1981, 1985): Connected the geodesic flow on $M=\mathbb{H} / S L_{2}(\mathbb{Z})$ with Gauss dynamical system using a symbolic dynamics.

Pollicott (2009): Used this connection to find the weak limit of the normalized maxima of the geodesic flow on M.

Our work yields the rate of convergence in Pollicott's result.

The main result

Theorem (Ghosh, Kirsebom, R. (2019))

There exists $\kappa>0$ and a sequence $1 \ll \ell_{n} \ll n^{\epsilon}$ (for all $\epsilon>0$) such that for all $u>0$ and for all $n \in \mathbb{N}$,

$$
d_{T V}\left(\mathcal{E}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right):=\sup _{A \subseteq \mathbb{N} \cup\{0\}}\left|P\left(\mathcal{E}_{n}^{u} \in A\right)-P\left(\mathcal{E}_{\infty}^{u} \in A\right)\right| \leq \frac{\kappa}{\min \left\{u, u^{2}\right\}} \frac{\ell_{n}}{n}
$$

The main result

Theorem (Ghosh, Kirsebom, R. (2019))
There exists $\kappa>0$ and a sequence $1 \ll \ell_{n} \ll n^{\epsilon}$ (for all $\epsilon>0$) such that for all $u>0$ and for all $n \in \mathbb{N}$,

$$
d_{T V}\left(\mathcal{E}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right):=\sup _{A \subseteq \mathbb{N} \cup\{0\}}\left|P\left(\mathcal{E}_{n}^{u} \in A\right)-P\left(\mathcal{E}_{\infty}^{u} \in A\right)\right| \leq \frac{\kappa}{\min \left\{u, u^{2}\right\}} \frac{\ell_{n}}{n} .
$$

Corollary

Suppose $M_{n}^{(k)}:=k^{\text {th }}$ maximum of $\left\{A_{i} \log 2: 1 \leq i \leq n\right\}$. For all $u>0$ and for all $k, n \in \mathbb{N}$,

$$
\sup _{k \in \mathbb{N}}\left|P\left(\frac{M_{n}^{(k)}}{n} \leq u\right)-e^{-u^{-1}} \sum_{i=0}^{k-1} \frac{u^{-i}}{i!}\right| \leq \frac{\kappa}{\min \left\{u, u^{2}\right\}} \frac{\ell_{n}}{n} .
$$

Comparison with existing results

- Resnick and de Haan (1989): If A_{1}, A_{2}, \ldots were independent, then

$$
\left|P\left(M_{n}^{(1)} / n \leq u\right)-e^{-u^{-1}}\right| \leq O(1 / n) .
$$

Comparison with existing results

- Resnick and de Haan (1989): If A_{1}, A_{2}, \ldots were independent, then

$$
\left|P\left(M_{n}^{(1)} / n \leq u\right)-e^{-u^{-1}}\right| \leq O(1 / n) .
$$

Our upper bound $=O\left(\ell_{n} / n\right)=o\left(n^{-1+\epsilon}\right)$ for all $\epsilon>0$.

Comparison with existing results

- Resnick and de Haan (1989): If A_{1}, A_{2}, \ldots were independent, then

$$
\left|P\left(M_{n}^{(1)} / n \leq u\right)-e^{-u^{-1}}\right| \leq O(1 / n) .
$$

Our upper bound $=O\left(\ell_{n} / n\right)=o\left(n^{-1+\epsilon}\right)$ for all $\epsilon>0$.

- Philipp (1976): For Gauss dynamical system

$$
\left|P\left(M_{n}^{(1)} / n \leq u\right)-e^{-u^{-1}}\right| \leq \quad O\left(\exp \left\{-(\log n)^{\delta}\right\}\right)
$$

for all $\delta \in(0,1)$.

Comparison with existing results

- Resnick and de Haan (1989): If A_{1}, A_{2}, \ldots were independent, then

$$
\left|P\left(M_{n}^{(1)} / n \leq u\right)-e^{-u^{-1}}\right| \leq O(1 / n) .
$$

Our upper bound $=O\left(\ell_{n} / n\right)=o\left(n^{-1+\epsilon}\right)$ for all $\epsilon>0$.

- Philipp (1976): For Gauss dynamical system

$$
\left|P\left(M_{n}^{(1)} / n \leq u\right)-e^{-u^{-1}}\right| \leq O\left(\ell_{n} / n\right) \ll O\left(\exp \left\{-(\log n)^{\delta}\right\}\right)
$$

for all $\delta \in(0,1)$.

Sketch of proof

Recall $\mathcal{E}_{n}^{u}=\sum_{j=1}^{n} \mathbb{1}_{\left(A_{j} \log 2>u n\right)} \stackrel{\text { approx }}{\sim} \operatorname{Bin}\left(n, p_{n}=P\left(A_{1} \log 2>u n\right)\right)$.

On the other hand, $\mathcal{E}_{\infty}^{u} \sim \operatorname{Poi}\left(u^{-1}\right)$.

Sketch of proof

Recall $\mathcal{E}_{n}^{u}=\sum_{j=1}^{n} \mathbb{1}_{\left(A_{j} \log 2>u n\right)} \stackrel{\text { approx }}{\sim} \operatorname{Bin}\left(n, p_{n}=P\left(A_{1} \log 2>u n\right)\right)$.
Define an intermediate random variable $\tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$.
On the other hand, $\mathcal{E}_{\infty}^{u} \sim \operatorname{Poi}\left(u^{-1}\right)$.

Sketch of proof

Recall $\mathcal{E}_{n}^{u}=\sum_{j=1}^{n} \mathbb{1}_{\left(A_{j} \log 2>u n\right)} \stackrel{\text { approx }}{\sim} \operatorname{Bin}\left(n, p_{n}=P\left(A_{1} \log 2>u n\right)\right)$.
Define an intermediate random variable $\tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$.
On the other hand, $\mathcal{E}_{\infty}^{u} \sim \operatorname{Poi}\left(u^{-1}\right)$.

- Use triangle inequality

$$
d_{T V}\left(\mathcal{E}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right) \leq d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{\mathcal{E}}_{n}^{u}\right)+d_{T V}\left(\tilde{\mathcal{E}}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right)
$$

Sketch of proof

Recall $\mathcal{E}_{n}^{u}=\sum_{j=1}^{n} \mathbb{1}_{\left(A_{j} \log 2>u n\right)} \stackrel{\text { approx }}{\sim} \operatorname{Bin}\left(n, p_{n}=P\left(A_{1} \log 2>u n\right)\right)$.
Define an intermediate random variable $\tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$.
On the other hand, $\mathcal{E}_{\infty}^{u} \sim \operatorname{Poi}\left(u^{-1}\right)$.

- Use triangle inequality

$$
d_{T V}\left(\mathcal{E}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right) \leq d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{\mathcal{E}}_{n}^{u}\right)+d_{T V}\left(\tilde{\mathcal{E}}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right) .
$$

- Bound $d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{\mathcal{E}}_{n}^{u}\right)$ using Chen-Stein method (Arratia, Goldstein and Gordon (1989)) + exponential mixing (Philipp (1970)).

Sketch of proof

Recall $\mathcal{E}_{n}^{u}=\sum_{j=1}^{n} \mathbb{1}_{\left(A_{j} \log 2>u n\right)} \stackrel{\text { approx }}{\sim} \operatorname{Bin}\left(n, p_{n}=P\left(A_{1} \log 2>u n\right)\right)$.
Define an intermediate random variable $\tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$.
On the other hand, $\mathcal{E}_{\infty}^{u} \sim \operatorname{Poi}\left(u^{-1}\right)$.

- Use triangle inequality

$$
d_{T V}\left(\mathcal{E}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right) \leq d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{\mathcal{E}}_{n}^{u}\right)+d_{T V}\left(\tilde{\mathcal{E}}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right) .
$$

- Bound $d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{\mathcal{E}}_{n}^{u}\right)$ using Chen-Stein method (Arratia, Goldstein and Gordon (1989)) + exponential mixing (Philipp (1970)).
- Estimate $d_{T V}\left(\tilde{\mathcal{E}}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right)$ using second order regular variation.

How to estimate $d_{T V}\left(\tilde{\mathcal{E}}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right)$?

Recall $\tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$ and $\mathcal{E}_{\infty}^{u} \sim \operatorname{Poi}\left(u^{-1}\right)$.

How to estimate $d_{T V}\left(\tilde{\mathcal{E}}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right)$?

Recall $\quad \tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$ and $\mathcal{E}_{\infty}^{u} \sim \operatorname{Poi}\left(u^{-1}\right)$.

Lemma (8) of Freedman (1974):

$$
\begin{aligned}
& d_{T V}\left(\tilde{\mathcal{E}}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right) \leq\left|n p_{n}-u^{-1}\right| \quad \text { (soft bound) } \\
& =\left|n P\left(A_{1} \log 2>u n\right)-u^{-1}\right|
\end{aligned}
$$

How to estimate $d_{T V}\left(\tilde{\mathcal{E}}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right)$?

Recall $\quad \tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$ and $\mathcal{E}_{\infty}^{u} \sim \operatorname{Poi}\left(u^{-1}\right)$.

Lemma (8) of Freedman (1974):

$$
\begin{aligned}
& d_{T V}\left(\tilde{\mathcal{E}}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right) \leq\left|n p_{n}-u^{-1}\right| \quad \text { (soft bound) } \\
& =\left|n P\left(A_{1} \log 2>u n\right)-u^{-1}\right|
\end{aligned}
$$

$$
\leq \frac{3 \log 2}{2 u^{2}} \frac{1}{n}
$$

(second order regular variation)

How to estimate $d_{T V}\left(\tilde{\mathcal{E}}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right)$?

Recall $\quad \tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$ and $\mathcal{E}_{\infty}^{u} \sim \operatorname{Poi}\left(u^{-1}\right)$.

Lemma (8) of Freedman (1974):

$$
\begin{aligned}
& d_{T V}\left(\tilde{\mathcal{E}}_{n}^{u}, \mathcal{E}_{\infty}^{u}\right) \leq\left|n p_{n}-u^{-1}\right| \quad \text { (soft bound) } \\
& =\left|n P\left(A_{1} \log 2>u n\right)-u^{-1}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{3 \log 2}{2 u^{2}} \frac{1}{n} \\
& \ll \frac{\ell_{n}}{n} .
\end{aligned}
$$

How to bound $d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{\mathcal{E}}_{n}^{u}\right)$?

Recall $\quad \mathcal{E}_{n}^{u}=\sum_{i=1}^{n} \mathbb{1}_{\left(A_{i} \log 2>u n\right)} \quad$ and $\quad \tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$.

How to bound $d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{\mathcal{E}}_{n}^{u}\right)$?

Recall $\quad \mathcal{E}_{n}^{u}=\sum_{i=1}^{n} \mathbb{1}_{\left(A_{i} \log 2>u n\right)} \quad$ and $\quad \tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$.
$\mathcal{I}:=\{1,2, \ldots, n\}$.

How to bound $d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{\mathcal{E}}_{n}^{u}\right)$?

Recall $\quad \mathcal{E}_{n}^{u}=\sum_{i=1}^{n} \mathbb{1}_{\left(A_{i} \log 2>u n\right)} \quad$ and $\quad \tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$.
$\mathcal{I}:=\{1,2, \ldots, n\} .\left\{X_{i}:=\mathbb{1}_{\left(A_{i} \log 2>u n\right)} \sim \operatorname{Ber}\left(p_{n}\right)\right\}_{i \in \mathcal{I}}$ (dependent).

How to bound $d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{\mathcal{E}}_{n}^{u}\right)$?

Recall $\quad \mathcal{E}_{n}^{u}=\sum_{i=1}^{n} \mathbb{1}_{\left(A_{i} \log 2>u n\right)} \quad$ and $\quad \tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$.
$\mathcal{I}:=\{1,2, \ldots, n\} .\left\{X_{i}:=\mathbb{1}_{\left(A_{i} \log 2>u n\right)} \sim \operatorname{Ber}\left(p_{n}\right)\right\}_{i \in \mathcal{I}}$ (dependent).
Note that $\mathcal{E}_{n}^{u}=\sum_{i \in \mathcal{I}} X_{i}$.

How to bound $d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{E}_{n}^{u}\right)$?

Recall $\quad \mathcal{E}_{n}^{u}=\sum_{i=1}^{n} \mathbb{1}_{\left(A_{i} \log 2>u n\right)} \quad$ and $\quad \tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$.
$\mathcal{I}:=\{1,2, \ldots, n\} .\left\{X_{i}:=\mathbb{1}_{\left(A_{i} \log 2>u n\right)} \sim \operatorname{Ber}\left(p_{n}\right)\right\}_{i \in \mathcal{I}}$ (dependent).
Note that $\mathcal{E}_{n}^{u}=\sum_{i \in \mathcal{I}} X_{i}$.

Take $Y_{1}, Y_{2}, \ldots, Y_{n} \stackrel{\text { iid }}{\sim} \operatorname{Poi}\left(p_{n}\right)$.

How to bound $d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{E}_{n}^{u}\right)$?

Recall $\quad \mathcal{E}_{n}^{u}=\sum_{i=1}^{n} \mathbb{1}_{\left(A_{i} \log 2>u n\right)} \quad$ and $\quad \tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$.
$\mathcal{I}:=\{1,2, \ldots, n\} .\left\{X_{i}:=\mathbb{1}_{\left(A_{i} \log 2>u n\right)} \sim \operatorname{Ber}\left(p_{n}\right)\right\}_{i \in \mathcal{I}}$ (dependent).
Note that $\mathcal{E}_{n}^{u}=\sum_{i \in \mathcal{I}} X_{i}$.

Take $Y_{1}, Y_{2}, \ldots, Y_{n} \stackrel{i i d}{\sim} \operatorname{Poi}\left(p_{n}\right)$. Therefore $\tilde{\mathcal{E}}_{n}^{u} \stackrel{\mathcal{L}}{=} \sum_{i \in I} Y_{i}$.

How to bound $d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{\mathcal{E}}_{n}^{u}\right)$?

Recall $\quad \mathcal{E}_{n}^{u}=\sum_{i=1}^{n} \mathbb{1}_{\left(A_{i} \log 2>u n\right)} \quad$ and $\quad \tilde{\mathcal{E}}_{n}^{u} \sim \operatorname{Poi}\left(n p_{n}\right)$.
$\mathcal{I}:=\{1,2, \ldots, n\} .\left\{X_{i}:=\mathbb{1}_{\left(A_{i} \log 2>u n\right)} \sim \operatorname{Ber}\left(p_{n}\right)\right\}_{i \in \mathcal{I}}$ (dependent).
Note that $\mathcal{E}_{n}^{u}=\sum_{i \in \mathcal{I}} X_{i}$.

Take $Y_{1}, Y_{2}, \ldots, Y_{n} \stackrel{i i d}{\sim} \operatorname{Poi}\left(p_{n}\right)$. Therefore $\tilde{\mathcal{E}}_{n}^{u} \stackrel{\mathcal{L}}{=} \sum_{i \in I} Y_{i}$.

$$
d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{\mathcal{E}}_{n}^{u}\right)=d_{T V}\left(\sum_{i \in \mathcal{I}} X_{i}, \sum_{i \in \mathcal{I}} Y_{i}\right) \leq ? ?
$$

Arratia, Goldstein and Gordon (1989)

$\left\{X_{i} \sim \operatorname{Ber}\left(\pi_{i}\right)\right\}_{i \in \mathcal{I}}$ (possibly dependent).
$\left\{Y_{i} \sim \operatorname{Poi}\left(\pi_{i}\right)\right\}_{i \in \mathcal{I}}$ (independent).

Arratia, Goldstein and Gordon (1989)

$\left\{X_{i} \sim \operatorname{Ber}\left(\pi_{i}\right)\right\}_{i \in \mathcal{I}}$ (possibly dependent).
$\left\{Y_{i} \sim \operatorname{Poi}\left(\pi_{i}\right)\right\}_{i \in \mathcal{I}}$ (independent).
For each $i \in \mathcal{I}$, there exists a subset $B_{i} \subseteq \mathcal{I}$ such that $i \in B_{i}$ and X_{i} is "nearly independent" of $\left\{X_{j}: j \in \mathcal{I} \backslash B_{i}\right\}$.

Arratia, Goldstein and Gordon (1989)

$\left\{X_{i} \sim \operatorname{Ber}\left(\pi_{i}\right)\right\}_{i \in \mathcal{I}}$ (possibly dependent).
$\left\{Y_{i} \sim \operatorname{Poi}\left(\pi_{i}\right)\right\}_{i \in \mathcal{I}}$ (independent).
For each $i \in \mathcal{I}$, there exists a subset $B_{i} \subseteq \mathcal{I}$ such that $i \in B_{i}$ and X_{i} is "nearly independent" of $\left\{X_{j}: j \in \mathcal{I} \backslash B_{i}\right\}$.

$$
b_{1}:=\sum_{i \in \mathcal{I}} \sum_{j \in B_{i}} \pi_{i} \pi_{j}, \quad b_{2}:=\sum_{i \in \mathcal{I}} \sum_{j \in B_{i} \backslash\{i\}} E\left(X_{i} X_{j}\right),
$$

Arratia, Goldstein and Gordon (1989)

$\left\{X_{i} \sim \operatorname{Ber}\left(\pi_{i}\right)\right\}_{i \in \mathcal{I}}$ (possibly dependent).
$\left\{Y_{i} \sim \operatorname{Poi}\left(\pi_{i}\right)\right\}_{i \in \mathcal{I}}$ (independent).
For each $i \in \mathcal{I}$, there exists a subset $B_{i} \subseteq \mathcal{I}$ such that $i \in B_{i}$ and X_{i} is "nearly independent" of $\left\{X_{j}: j \in \mathcal{I} \backslash B_{i}\right\}$.

$$
\begin{aligned}
b_{1} & :=\sum_{i \in \mathcal{I}} \sum_{j \in B_{i}} \pi_{i} \pi_{j}, \quad b_{2}:=\sum_{i \in \mathcal{I}} \sum_{j \in B_{i} \backslash\{i\}} E\left(X_{i} X_{j}\right), \\
b_{3} & :=\sum_{i \in \mathcal{I}} E\left[\left|E\left(X_{i}-\pi_{i} \mid\left\{X_{j}: j \in \mathcal{I} \backslash B_{j}\right\}\right)\right|\right] .
\end{aligned}
$$

Arratia, Goldstein and Gordon (1989)

$\left\{X_{i} \sim \operatorname{Ber}\left(\pi_{i}\right)\right\}_{i \in \mathcal{I}}$ (possibly dependent).
$\left\{Y_{i} \sim \operatorname{Poi}\left(\pi_{i}\right)\right\}_{i \in \mathcal{I}}$ (independent).
For each $i \in \mathcal{I}$, there exists a subset $B_{i} \subseteq \mathcal{I}$ such that $i \in B_{i}$ and X_{i} is "nearly independent" of $\left\{X_{j}: j \in \mathcal{I} \backslash B_{i}\right\}$.

$$
\begin{gathered}
b_{1}:=\sum_{i \in \mathcal{I}} \sum_{j \in B_{i}} \pi_{i} \pi_{j}, \quad b_{2}:=\sum_{i \in \mathcal{I}} \sum_{j \in B_{i} \backslash\{i\}} E\left(X_{i} X_{j}\right), \\
b_{3}:=\sum_{i \in \mathcal{I}} E\left[\left|E\left(X_{i}-\pi_{i} \mid\left\{X_{j}: j \in \mathcal{I} \backslash B_{j}\right\}\right)\right|\right] . \\
\quad \operatorname{d} d_{T V}\left(\sum_{i \in \mathcal{I}} X_{i}, \sum_{i \in \mathcal{I}} Y_{i}\right) \leq 4 b_{1}+4 b_{2}+2 b_{3}
\end{gathered}
$$

Arratia, Goldstein and Gordon (1989)

$\left\{X_{i} \sim \operatorname{Ber}\left(\pi_{i}\right)\right\}_{i \in \mathcal{I}}$ (possibly dependent).
$\left\{Y_{i} \sim \operatorname{Poi}\left(\pi_{i}\right)\right\}_{i \in \mathcal{I}}$ (independent).
For each $i \in \mathcal{I}$, there exists a subset $B_{i} \subseteq \mathcal{I}$ such that $i \in B_{i}$ and X_{i} is "nearly independent" of $\left\{X_{j}: j \in \mathcal{I} \backslash B_{i}\right\}$.

$$
\begin{aligned}
b_{1} & :=\sum_{i \in \mathcal{I}} \sum_{j \in B_{i}} \pi_{i} \pi_{j}, \quad b_{2}:=\sum_{i \in \mathcal{I}} \sum_{\left.j \in B_{i} \backslash i\right\}} E\left(X_{i} X_{j}\right), \\
b_{3} & :=\sum_{i \in \mathcal{I}} E\left[\left|E\left(X_{i}-\pi_{i} \mid\left\{X_{j}: j \in \mathcal{I} \backslash B_{j}\right\}\right)\right|\right] .
\end{aligned}
$$

$$
d_{T V}\left(\mathcal{E}_{n}^{u}, \tilde{\mathcal{E}}_{n}^{u}\right)=d_{T V}\left(\sum_{i \in \mathcal{I}} X_{i}, \sum_{i \in \mathcal{I}} Y_{i}\right) \leq 4 b_{1}+4 b_{2}+2 b_{3}
$$

How to bound b_{1}, b_{2}, b_{3} ?

After carefully choosing the B_{i} 's ...

How to bound b_{1}, b_{2}, b_{3} ?

After carefully choosing the B_{i} 's ...

- b_{1} can be bounded easily, and

How to bound b_{1}, b_{2}, b_{3} ?

After carefully choosing the B_{i} 's...

- b_{1} can be bounded easily, and
- the bounds on b_{2} and b_{3} need the following exponential mixing property of A_{i} 's:

How to bound b_{1}, b_{2}, b_{3} ?

After carefully choosing the B_{i} 's ...

- b_{1} can be bounded easily, and
- the bounds on b_{2} and b_{3} need the following exponential mixing property of A_{i} 's:

Theorem (Philipp (1970))

There exists $C>0$ and $\theta>1$ such that for all $m, n \in \mathbb{N}$, for all $F \in \sigma\left(A_{1}, A_{2}, \ldots, A_{m}\right)$, and for all $H \in \sigma\left(A_{m+n}, A_{m+n+1}, \ldots\right)$,

$$
|P(F \cap H)-P(F) P(H)| \leq C \theta^{-n} P(F) P(H) .
$$

Thank You Very Much

