Continued fractions, Chen-Stein method and extreme value theory

Parthanil Roy, Indian Statistical Institute Joint work with Anish Ghosh and Maxim Kirsebom

April 25, 2019

Parthanil Roy

April 25, 2019 1/30

<mark>7</mark> 24

▲□▶▲□▶▲□▶▲□▶ = 三 - のへで

$$\frac{7}{24} = \frac{1}{24/7}$$

- イロト イヨト イヨト - ヨー - のくぐ

$$\frac{7}{24} = \frac{1}{24/7} = \frac{1}{3 + \frac{3}{7}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● □ ● ○○○

$$\frac{7}{24} = \frac{1}{24/7} = \frac{1}{3 + \frac{3}{7}} = \frac{1}{3 + \frac{1}{7/3}}$$

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\frac{7}{24} = \frac{1}{24/7} = \frac{1}{3 + \frac{3}{7}} = \frac{1}{3 + \frac{1}{7/3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{3}}}$$

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\frac{7}{24} = \frac{1}{24/7} = \frac{1}{3 + \frac{3}{7}} = \frac{1}{3 + \frac{1}{7/3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{3}}} := [3, 2, 3]$$

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\frac{7}{24} = \frac{1}{24/7} = \frac{1}{3 + \frac{3}{7}} = \frac{1}{3 + \frac{1}{7/3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{3}}} := [3, 2, 3]$$

Note that 7 > 3 > 1.

$$\frac{7}{24} = \frac{1}{24/7} = \frac{1}{3 + \frac{3}{7}} = \frac{1}{3 + \frac{1}{7/3}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{3}}} := [3, 2, 3]$$

Note that 7 > 3 > 1.

Therefore by Euclidean Algorithm, any rational number

$$\omega = p/q \in (0,1)$$

(with gcd(p,q) = 1) will have a terminating (regular) continued fraction expansion.

Conversely ...

Whenever $A_1, A_2, A_3, A_4 \in \mathbb{N}$,

$$[A_1, A_2, A_3, A_4] := \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{A_3 + \frac{1}{A_4}}}} \in (0, 1)$$

is a rational number.

Conversely ...

Whenever $A_1, A_2, A_3, A_4 \in \mathbb{N}$,

$$[A_1, A_2, A_3, A_4] := \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{A_3 + \frac{1}{A_4}}}} \in (0, 1)$$

is a rational number.

More generally, by induction on n,

$$\omega = [A_1, A_2, \dots A_n]$$

(with $A_1, A_2, \ldots A_n \in \mathbb{N}$) is a rational number in (0, 1).

イロト イポト イヨト イヨト 一日

Theorem

A number $\omega \in (0, 1)$ has a unique non-terminating continued fraction expansion

$$\omega = \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{A_3 + \dots}}} =: [A_1, A_2, A_3, \dots]$$

(with each $A_i \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$.

Theorem

A number $\omega \in (0, 1)$ has a unique non-terminating continued fraction expansion

$$\omega = \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{A_3 + \dots}}} =: [A_1, A_2, A_3, \dots]$$

(with each $A_i \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$. Furthermore in this case, the n^{th} truncate $[A_1, A_2, \ldots A_n] \to \omega$ as $n \to \infty$.

Theorem

A number $\omega \in (0, 1)$ has a unique non-terminating continued fraction expansion

$$\omega = \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{A_3 + \dots}}} =: [A_1, A_2, A_3, \dots]$$

(with each $A_i \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$. Furthermore in this case, the n^{th} truncate $[A_1, A_2, \ldots A_n] \to \omega$ as $n \to \infty$.

Canonical rational approximation: $\omega \approx [A_1, A_2, \dots A_n]$.

Theorem

A number $\omega \in (0, 1)$ has a unique non-terminating continued fraction expansion

$$\omega = \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{A_3 + \dots}}} =: [A_1, A_2, A_3, \dots]$$

(with each $A_i \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$. Furthermore in this case, the n^{th} truncate $[A_1, A_2, \ldots A_n] \to \omega$ as $n \to \infty$.

Canonical rational approximation: $\omega \approx [A_1, A_2, \dots A_n]$.

Examples: $\pi \approx \frac{22}{7}$

イロト イポト イヨト イヨト 二日

Theorem

A number $\omega \in (0, 1)$ has a unique non-terminating continued fraction expansion

$$\omega = \frac{1}{A_1 + \frac{1}{A_2 + \frac{1}{A_3 + \dots}}} =: [A_1, A_2, A_3, \dots]$$

(with each $A_i \in \mathbb{N}$) if and only if $\omega \notin \mathbb{Q}$. Furthermore in this case, the n^{th} truncate $[A_1, A_2, \ldots A_n] \to \omega$ as $n \to \infty$.

Canonical rational approximation: $\omega \approx [A_1, A_2, \dots A_n]$.

Examples:
$$\pi \approx \frac{22}{7}$$
 and $\pi \approx \frac{355}{113}$.

Continued fractions are important in *algebra, analysis, combinatorics, ergodic theory, geometry, number theory, probability, etc..*

See, for example, Khintchine (1964).

For an irrational $\omega \in (0,1)$

$$\omega = \frac{1}{1/\omega} = \frac{1}{[1/\omega] + \{1/\omega\}} =: \frac{1}{A_1(\omega) + T(\omega)}$$
$$= \frac{1}{A_1(\omega) + \frac{1}{A_1(T(\omega)) + T^2(\omega)}}$$
$$=: \frac{1}{A_1(\omega) + \frac{1}{A_2(\omega) + T^2(\omega)}}$$
$$= \cdots$$

April 25, 2019 6 / 30

1

900

<ロト < 四ト < 三ト < 三ト

Take
$$\Omega=(0,1)$$
, $\mathcal{A}=\mathcal{B}_{(0,1)}$.

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 < つ < ○</p>

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$. Define $T : \Omega \to \Omega$ and $A_1 : \Omega \to \mathbb{N}$ by $T(\omega) = \{1/\omega\}$ (Gauss map) and $A_1(\omega) = [1/\omega]$

for irrational $\omega \in \Omega$

7/30

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$. Define $T : \Omega \to \Omega$ and $A_1 : \Omega \to \mathbb{N}$ by $T(\omega) = \{1/\omega\} (Gauss map) \text{ and } A_1(\omega) = [1/\omega]$

for irrational $\omega \in \Omega$ (and any way you like for rational $\omega \in \Omega$).

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$. Define $T : \Omega \to \Omega$ and $A_1 : \Omega \to \mathbb{N}$ by $T(\omega) = \{1/\omega\} (Gauss map) \text{ and } A_1(\omega) = [1/\omega]$

for irrational $\omega \in \Omega$ (and any way you like for rational $\omega \in \Omega$).

For all
$$j \in \mathbb{N}$$
, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$.

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$. Define $T : \Omega \to \Omega$ and $A_1 : \Omega \to \mathbb{N}$ by $T(\omega) = \{1/\omega\} \text{ (Gauss map)} \text{ and } A_1(\omega) = [1/\omega]$

for irrational $\omega \in \Omega$ (and any way you like for rational $\omega \in \Omega$).

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$. Then for almost all $\omega \in \Omega$ (namely, for all $\omega \in \Omega \setminus \mathbb{Q}$),

$$\omega = [A_1(\omega), A_2(\omega), A_3(\omega), \ldots].$$

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$. Define $T : \Omega \to \Omega$ and $A_1 : \Omega \to \mathbb{N}$ by $T(\omega) = \{1/\omega\} (Gauss map)$ and $A_1(\omega) = [1/\omega]$

for irrational $\omega \in \Omega$ (and any way you like for rational $\omega \in \Omega$).

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$. Then for almost all $\omega \in \Omega$ (namely, for all $\omega \in \Omega \setminus \mathbb{Q}$),

$$\omega = [A_1(\omega), A_2(\omega), A_3(\omega), \ldots].$$

Quick Observation: T, A_1 measurable \Rightarrow each A_n measurable.

Parthanil	Roy
-----------	-----

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$. Define $T : \Omega \to \Omega$ and $A_1 : \Omega \to \mathbb{N}$ by $T(\omega) = \{1/\omega\} \text{ (Gauss map)} \text{ and } A_1(\omega) = [1/\omega].$

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$. Define $T : \Omega \to \Omega$ and $A_1 : \Omega \to \mathbb{N}$ by $T(\omega) = \{1/\omega\} (Gauss map)$ and $A_1(\omega) = [1/\omega]$.

Bad News: T does not preserve the Lebesgue measure on (0, 1).

< ロト < 母 ト < 臣 ト < 臣 ト 三 三 のへで

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$. Define $T : \Omega \to \Omega$ and $A_1 : \Omega \to \mathbb{N}$ by $T(\omega) = \{1/\omega\} (Gauss map)$ and $A_1(\omega) = [1/\omega]$.

Bad News: T does not preserve the Lebesgue measure on (0, 1).

Define a probability measure P (*Gauss measure*) on (Ω, \mathcal{A}) by

$$P(A) = \int_A \frac{1}{(1+x)\log 2} dx.$$

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$. Define $T : \Omega \to \Omega$ and $A_1 : \Omega \to \mathbb{N}$ by $T(\omega) = \{1/\omega\} (Gauss map)$ and $A_1(\omega) = [1/\omega]$.

Bad News: T does not preserve the Lebesgue measure on (0, 1).

Define a probability measure P (*Gauss measure*) on (Ω, \mathcal{A}) by

$$P(A) = \int_A \frac{1}{(1+x)\log 2} dx.$$

Theorem (Gauss) T preserves P,

Parthanil Roy

April 25, 2019 8 / 30

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$. Define $T : \Omega \to \Omega$ and $A_1 : \Omega \to \mathbb{N}$ by $T(\omega) = \{1/\omega\} (Gauss map)$ and $A_1(\omega) = [1/\omega]$.

Bad News: T does not preserve the Lebesgue measure on (0, 1).

Define a probability measure P (Gauss measure) on (Ω, \mathcal{A}) by

$$P(A) = \int_A \frac{1}{(1+x)\log 2} dx.$$

Theorem (Gauss) T preserves P, i.e., for all $A \in A$, $P(A) = P(T^{-1}(A))$.

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$. Define $T : \Omega \to \Omega$ and $A_1 : \Omega \to \mathbb{N}$ by $T(\omega) = \{1/\omega\}$ (Gauss map) and $A_1(\omega) = [1/\omega]$.

Bad News: T does not preserve the Lebesgue measure on (0, 1).

Define a probability measure P (Gauss measure) on (Ω, \mathcal{A}) by

$$P(A) = \int_A \frac{1}{(1+x)\log 2} dx.$$

Theorem (Gauss)

T preserves P, i.e., for all $A \in \mathcal{A}$, $P(A) = P(T^{-1}(A))$.

 $(\Omega, \mathcal{A}, \mathcal{P}, \mathcal{T}) =$ the Gauss dynamical system. CF and EVT Parthanil Roy 8 / 30

April 25, 2019

Exercise (in *Probability Theory II*): Suppose X is a random variable having probability density function

$$f_X(x) = \frac{1}{(1+x)\log 2}, \ x \in (0,1).$$

Then show that $\{1/X\} \stackrel{\mathcal{L}}{=} X$.

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$, $P(dx) = ((1 + x) \log 2)^{-1} dx$.

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$, $P(dx) = ((1 + x) \log 2)^{-1} dx$. Define $T: \Omega \to \Omega$ by $T(\omega) = \{1/\omega\}$ and $A_1: \Omega \to \mathbb{N}$ by $A_1(\omega) = [1/\omega]$.

<ロ> < (日) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (

Take
$$\Omega = (0, 1)$$
, $\mathcal{A} = \mathcal{B}_{(0,1)}$, $P(dx) = ((1 + x) \log 2)^{-1} dx$. Define $T : \Omega \to \Omega$ by $T(\omega) = \{1/\omega\}$ and $A_1 : \Omega \to \mathbb{N}$ by $A_1(\omega) = [1/\omega]$.

For all $j \in \mathbb{N}$, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$.

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$, $P(dx) = ((1 + x) \log 2)^{-1} dx$. Define $T : \Omega \to \Omega$ by $T(\omega) = \{1/\omega\}$ and $A_1 : \Omega \to \mathbb{N}$ by $A_1(\omega) = [1/\omega]$. For all $j \in \mathbb{N}$, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$.

This defines a sequence $\{A_n : \Omega \to \mathbb{N}\}_{n \ge 1}$ of positive integer-valued random variables on the probability space (Ω, \mathcal{A}, P) .

イロト イ理ト イヨト イヨト ヨー シタウ

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$, $P(dx) = ((1 + x) \log 2)^{-1} dx$. Define $T : \Omega \to \Omega$ by $T(\omega) = \{1/\omega\}$ and $A_1 : \Omega \to \mathbb{N}$ by $A_1(\omega) = [1/\omega]$. For all $j \in \mathbb{N}$, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$.

This defines a sequence $\{A_n : \Omega \to \mathbb{N}\}_{n \ge 1}$ of positive integer-valued random variables on the probability space (Ω, \mathcal{A}, P) .

 $A_n = n^{th}$ digit in the regular continued fraction expansion of a random number $\omega \in (0, 1)$ chosen according to the law P.
A stationary process

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$, $P(dx) = ((1 + x) \log 2)^{-1} dx$. Define $T : \Omega \to \Omega$ by $T(\omega) = \{1/\omega\}$ and $A_1 : \Omega \to \mathbb{N}$ by $A_1(\omega) = [1/\omega]$. For all $j \in \mathbb{N}$, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$.

This defines a sequence $\{A_n : \Omega \to \mathbb{N}\}_{n \ge 1}$ of positive integer-valued random variables on the probability space (Ω, \mathcal{A}, P) .

 $A_n = n^{th}$ digit in the regular continued fraction expansion of a random number $\omega \in (0, 1)$ chosen according to the law P.

T preserves $P \Rightarrow \{A_n\}$ is a strictly stationary process.

Parthanil	Roy
-----------	-----

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

A stationary process

Take $\Omega = (0, 1)$, $\mathcal{A} = \mathcal{B}_{(0,1)}$, $P(dx) = ((1 + x) \log 2)^{-1} dx$. Define $T : \Omega \to \Omega$ by $T(\omega) = \{1/\omega\}$ and $A_1 : \Omega \to \mathbb{N}$ by $A_1(\omega) = [1/\omega]$. For all $j \in \mathbb{N}$, set $A_{j+1}(\omega) := A_1(T^j(\omega)), \ \omega \in \Omega$.

This defines a sequence $\{A_n : \Omega \to \mathbb{N}\}_{n \ge 1}$ of positive integer-valued random variables on the probability space (Ω, \mathcal{A}, P) .

 $A_n = n^{th}$ digit in the regular continued fraction expansion of a random number $\omega \in (0, 1)$ chosen according to the law P.

T preserves $P \Rightarrow \{A_n\}$ is a strictly stationary process. In particular, A_1, A_2, A_3, \ldots are identically distributed.

• **Direct Computation**: For all $m \in \mathbb{N}$,

$$P(A_1 \ge m) = \frac{1}{\log 2} \log \left(1 + \frac{1}{m}\right)$$

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ○</p>

• **Direct Computation**: For all $m \in \mathbb{N}$,

$$P(A_1 \ge m) = rac{1}{\log 2} \log \left(1 + rac{1}{m}\right) \sim rac{1}{m \log 2} \quad (ext{as } m o \infty).$$

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ○</p>

• Direct Computation: For all $m \in \mathbb{N}$,

$$P(A_1 \ge m) = rac{1}{\log 2} \log \left(1 + rac{1}{m}\right) \sim rac{1}{m \log 2} \quad (ext{as } m o \infty).$$

• For all u > 0,

$$P\left(\frac{A_1\log 2}{n} > u\right) = P\left(A_1 \ge \left\lceil \frac{un}{\log 2} \right\rceil\right) \sim \frac{1}{un}$$

as $n \to \infty$.

3

< ∃ >

-

Image: A matrix of the second seco

• Direct Computation: For all $m \in \mathbb{N}$,

$$P(A_1 \ge m) = rac{1}{\log 2} \log \left(1 + rac{1}{m}\right) \sim rac{1}{m \log 2} \quad (ext{as } m o \infty).$$

• For all u > 0,

$$P\left(\frac{A_1\log 2}{n} > u\right) = P\left(A_1 \ge \left\lceil \frac{un}{\log 2} \right\rceil\right) \sim \frac{1}{un}$$

as $n \to \infty$. In particular,

$$nP\left(\frac{A_1\log 2}{n}>u\right) \to u^{-1}$$

 $(A_1 \text{ is regularly varying with index } 1).$

3

Sac

then

$$\mathbb{1}_{(A_1 \log 2 > un)}, \ \mathbb{1}_{(A_2 \log 2 > un)}, \ \mathbb{1}_{(A_3 \log 2 > un)}, \ \dots \stackrel{iid}{\sim} Ber(p_n),$$

where $p_n = P(A_1 \log 2 > un)$

12 / 30

then

$$1_{(A_1 \log 2 > un)}, \ 1_{(A_2 \log 2 > un)}, \ 1_{(A_3 \log 2 > un)}, \ \dots \stackrel{iid}{\sim} Ber(p_n),$$

where $p_n = P(A_1 \log 2 > un) \sim \frac{1}{un}.$

12 / 30

then

$$\mathbb{1}_{(A_1 \log 2 > un)}, \ \mathbb{1}_{(A_2 \log 2 > un)}, \ \mathbb{1}_{(A_3 \log 2 > un)}, \ \dots \stackrel{\text{id}}{\sim} Ber(p_n),$$

where $p_n = P(A_1 \log 2 > un) \sim \frac{1}{un}.$

Therefore for all u > 0,

$$\mathcal{E}_n^u := \#\{1 \le j \le n : A_j \log 2 > un\}$$

-

Image: A matrix of the second seco

Э

then

$$\mathbb{1}_{(A_1 \log 2 > un)}, \ \mathbb{1}_{(A_2 \log 2 > un)}, \ \mathbb{1}_{(A_3 \log 2 > un)}, \ \dots \stackrel{iid}{\sim} Ber(p_n),$$

where $p_n = P(A_1 \log 2 > un) \sim \frac{1}{un}.$

Therefore for all u > 0,

$$\mathcal{E}_n^u := \# \{ 1 \le j \le n : A_j \log 2 > un \} = \sum_{j=1}^n \mathbb{1}_{(A_j \log 2 > un)}$$

Image: A matrix of the second seco

-

Э

then

$$\mathbb{1}_{(A_1 \log 2 > un)}, \ \mathbb{1}_{(A_2 \log 2 > un)}, \ \mathbb{1}_{(A_3 \log 2 > un)}, \ \dots \stackrel{iid}{\sim} Ber(p_n),$$

where $p_n = P(A_1 \log 2 > un) \sim \frac{1}{un}.$

Therefore for all u > 0,

$$\mathcal{E}_{n}^{u} := \#\{1 \le j \le n : A_{j} \log 2 > un\} = \sum_{j=1}^{n} \mathbb{1}_{(A_{j} \log 2 > un)} \sim Bin(n, p_{n})$$

Image: A matrix of the second seco

-

Э

then

$$\mathbb{1}_{(A_1 \log 2 > un)}, \ \mathbb{1}_{(A_2 \log 2 > un)}, \ \mathbb{1}_{(A_3 \log 2 > un)}, \ \dots \stackrel{iid}{\sim} Ber(p_n),$$

where $p_n = P(A_1 \log 2 > un) \sim \frac{1}{un}.$

Therefore for all u > 0,

$$\mathcal{E}_{n}^{u} := \#\{1 \le j \le n : A_{j} \log 2 > un\} = \sum_{j=1}^{n} \mathbb{1}_{(A_{j} \log 2 > un)} \sim Bin(n, p_{n})$$

$$\stackrel{\mathcal{L}}{\longrightarrow} \mathcal{E}^{u}_{\infty} \sim \textit{Poi}(u^{-1})$$

as $n \to \infty$.

Image: A matrix of the second seco

-

э

Doeblin-losifescu asymptotics

Theorem (Doeblin (1940), losifescu (1977)) For all u > 0,

$$\mathcal{E}_n^u := \# \{ 1 \leq j \leq n : A_j \log 2 > un \} \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{E}_{\infty}^u \sim Poi(u^{-1})$$

as $n \to \infty$.

Doeblin-losifescu asymptotics

Theorem (Doeblin (1940), losifescu (1977)) For all u > 0,

$$\mathcal{E}_n^u := \# \{ 1 \leq j \leq n : A_j \log 2 > un \} \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{E}_{\infty}^u \sim Poi(u^{-1})$$

as $n \to \infty$.

Corollary (Main result of Galambos (1972)) Let $M_n^{(1)} := \max\{A_i \log 2 : 1 \le 1 \le n\}, n \in \mathbb{N}$. Then for all u > 0, $P\left(\frac{M_n^{(1)}}{n} \le u\right) \to e^{-u^{-1}}$

as $n \to \infty$.

Theorem (Doeblin (1940), losifescu (1977)) For all u > 0,

$$(DI) \qquad \qquad \mathcal{E}_n^u := \#\{1 \le j \le n : A_j \log 2 > un\} \xrightarrow{\mathcal{L}} \mathcal{E}_\infty^u \sim \operatorname{Poi}(u^{-1})$$

as $n o \infty$.

Question What is the rate of convergence in (DI)?

Parthanil	Roy
-----------	-----

イロト イボト イヨト イヨト 二日

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ○</p>

• Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972))

15 / 30

• Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972)) - significantly improves a result of Philipp (1976).

- Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972)) significantly improves a result of Philipp (1976).
- Rate of convergence for the scaled k^{th} maxima for any $k \in \mathbb{N}$

- Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972)) significantly improves a result of Philipp (1976).
- Rate of convergence for the scaled kth maxima for any k ∈ N (uniform over k).

- Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972)) significantly improves a result of Philipp (1976).
- Rate of convergence for the scaled kth maxima for any k ∈ N (uniform over k).
- A tiny detour of our proof recovers a result of Tyran-Kamińska (2010) on the weak convergence of the corresponding extremal point process.

- Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972)) significantly improves a result of Philipp (1976).
- Rate of convergence for the scaled kth maxima for any k ∈ N (uniform over k).
- A tiny detour of our proof recovers a result of Tyran-Kamińska (2010) on the weak convergence of the corresponding extremal point process. (Inspired by Chiarini, Cipriani and Hazra (2015).)

- Can estimate the rate of convergence of scaled maxima sequence $M_n^{(1)}/n$ (as in Galambos (1972)) significantly improves a result of Philipp (1976).
- Rate of convergence for the scaled kth maxima for any k ∈ N (uniform over k).
- A tiny detour of our proof recovers a result of Tyran-Kamińska (2010) on the weak convergence of the corresponding extremal point process. (Inspired by Chiarini, Cipriani and Hazra (2015).)
- Rate of convergence of the scaled maxima for the geodesic flow on the modular surface.

Р	ar	th	an	il.	Rov
	aı		an	н.	TOY

The group
$$SL_2(\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

acts isometrically on $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by rational transformations:

$$\left(\begin{array}{cc}a&b\\c&d\end{array}\right).z=\frac{az+b}{cz+d}.$$

The group
$$SL_2(\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

acts isometrically on $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by rational transformations:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) . z = \frac{az+b}{cz+d}.$$

Series (1981, 1985): Connected the geodesic flow on $M = \mathbb{H}/SL_2(\mathbb{Z})$ with Gauss dynamical system using a symbolic dynamics.

The group
$$SL_2(\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

acts isometrically on $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by rational transformations:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) . z = \frac{az+b}{cz+d}.$$

Series (1981, 1985): Connected the geodesic flow on $M = \mathbb{H}/SL_2(\mathbb{Z})$ with Gauss dynamical system using a symbolic dynamics.

Pollicott (2009): Used this connection to find the weak limit of the normalized maxima of the geodesic flow on M.

The group
$$SL_2(\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

acts isometrically on $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by rational transformations:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) . z = \frac{az+b}{cz+d}.$$

Series (1981, 1985): Connected the geodesic flow on $M = \mathbb{H}/SL_2(\mathbb{Z})$ with Gauss dynamical system using a symbolic dynamics.

Pollicott (2009): Used this connection to find the weak limit of the normalized maxima of the geodesic flow on M.

Our work yields the rate of convergence in Pollicott's result.

D			D
Р	arth	anıl	Коу

The main result

Theorem (Ghosh, Kirsebom, R. (2019))

There exists $\kappa > 0$ and a sequence $1 \ll \ell_n \ll n^{\epsilon}$ (for all $\epsilon > 0$) such that for all u > 0 and for all $n \in \mathbb{N}$,

$$d_{TV}(\mathcal{E}_n^u, \mathcal{E}_\infty^u) := \sup_{A \subseteq \mathbb{N} \cup \{0\}} \left| P(\mathcal{E}_n^u \in A) - P(\mathcal{E}_\infty^u \in A) \right| \le \frac{\kappa}{\min\{u, u^2\}} \frac{\ell_n}{n}.$$

The main result

Theorem (Ghosh, Kirsebom, R. (2019))

There exists $\kappa > 0$ and a sequence $1 \ll \ell_n \ll n^{\epsilon}$ (for all $\epsilon > 0$) such that for all u > 0 and for all $n \in \mathbb{N}$,

$$d_{TV}(\mathcal{E}_n^u, \mathcal{E}_\infty^u) := \sup_{A \subseteq \mathbb{N} \cup \{0\}} \left| P(\mathcal{E}_n^u \in A) - P(\mathcal{E}_\infty^u \in A) \right| \le \frac{\kappa}{\min\{u, u^2\}} \frac{\ell_n}{n}.$$

Corollary

Suppose $M_n^{(k)} := k^{th}$ maximum of $\{A_i \log 2 : 1 \le i \le n\}$. For all u > 0 and for all $k, n \in \mathbb{N}$,

$$\sup_{k\in\mathbb{N}}\left|P\left(\frac{M_n^{(k)}}{n}\leq u\right)-e^{-u^{-1}}\sum_{i=0}^{k-1}\frac{u^{-i}}{i!}\right|\leq \frac{\kappa}{\min\{u,u^2\}}\frac{\ell_n}{n}.$$

Parthanil Roy

• Resnick and de Haan (1989): If A_1, A_2, \ldots were independent, then ÷. ī

$$\left| P\left(M_{n}^{(1)}/n \leq u \right) - e^{-u^{-1}} \right| \leq O(1/n).$$

18 / 30

• Resnick and de Haan (1989): If A_1, A_2, \ldots were independent, then

$$\left| P\left(M_{n}^{(1)}/n \leq u \right) - e^{-u^{-1}} \right| \leq O(1/n).$$

Our upper bound = $O(\ell_n/n) = o(n^{-1+\epsilon})$ for all $\epsilon > 0$.

< □ > < 同 > < 三 >

Resnick and de Haan (1989): If A₁, A₂,... were independent, then

$$\left| P\left(M_{n}^{(1)}/n \leq u \right) - e^{-u^{-1}} \right| \leq O(1/n).$$

Our upper bound = $O(\ell_n/n) = o(n^{-1+\epsilon})$ for all $\epsilon > 0$.

• Philipp (1976): For Gauss dynamical system

$$\left| P\left(M_n^{(1)}/n \le u \right) - e^{-u^{-1}} \right| \le O\left(\exp\left\{ -(\log n)^{\delta} \right\} \right)$$

or all $\delta \in (0, 1)$.

f

Resnick and de Haan (1989): If A₁, A₂,... were independent, then

$$\left| P\left(M_{n}^{(1)}/n \leq u \right) - e^{-u^{-1}} \right| \leq O(1/n).$$

Our upper bound = $O(\ell_n/n) = o(n^{-1+\epsilon})$ for all $\epsilon > 0$.

• Philipp (1976): For Gauss dynamical system

$$\left| P\left(M_n^{(1)}/n \le u \right) - e^{-u^{-1}} \right| \le O(\ell_n/n) \ll O\left(\exp\left\{ -(\log n)^{\delta} \right\} \right)$$
for all $\delta \in (0, 1)$.

Sketch of proof

Recall
$$\mathcal{E}_n^u = \sum_{j=1}^n \mathbb{1}_{(A_j \log 2 > un)} \overset{approx}{\sim} Bin(n, p_n = P(A_1 \log 2 > un)).$$

On the other hand, $\mathcal{E}^{u}_{\infty} \sim Poi(u^{-1})$.

20 / 30

Sketch of proof

Recall $\mathcal{E}_n^u = \sum_{j=1}^n \mathbb{1}_{(A_j \log 2 > un)} \overset{approx}{\sim} Bin(n, p_n = P(A_1 \log 2 > un)).$

Define an intermediate random variable $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

On the other hand, $\mathcal{E}^u_{\infty} \sim \textit{Poi}(u^{-1})$.

Sketch of proof

Recall $\mathcal{E}_n^u = \sum_{j=1}^n \mathbb{1}_{(A_j \log 2 > un)} \overset{approx}{\sim} Bin(n, p_n = P(A_1 \log 2 > un)).$ Define an intermediate random variable $\tilde{\mathcal{E}}_n^u \sim Poi(np_n).$

On the other hand, $\mathcal{E}^u_\infty \sim \textit{Poi}(u^{-1}).$

• Use triangle inequality

$$d_{TV}(\mathcal{E}_n^u, \mathcal{E}_\infty^u) \leq d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u) + d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_\infty^u).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○
Sketch of proof

Recall $\mathcal{E}_n^u = \sum_{j=1}^n \mathbb{1}_{(A_j \log 2 > un)} \overset{approx}{\sim} Bin(n, p_n = P(A_1 \log 2 > un)).$

Define an intermediate random variable $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

On the other hand, $\mathcal{E}^u_{\infty} \sim Poi(u^{-1})$.

• Use triangle inequality

$$d_{TV}(\mathcal{E}_n^u, \mathcal{E}_\infty^u) \leq d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u) + d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_\infty^u).$$

• Bound $d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u)$ using Chen-Stein method (Arratia, Goldstein and Gordon (1989)) + exponential mixing (Philipp (1970)).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Sketch of proof

Recall $\mathcal{E}_n^u = \sum_{j=1}^n \mathbb{1}_{(A_j \log 2 > un)} \overset{approx}{\sim} Bin(n, p_n = P(A_1 \log 2 > un)).$

Define an intermediate random variable $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

On the other hand, $\mathcal{E}^u_{\infty} \sim Poi(u^{-1})$.

• Use triangle inequality

$$d_{TV}(\mathcal{E}_n^u, \mathcal{E}_\infty^u) \leq d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u) + d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_\infty^u).$$

• Bound $d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u)$ using Chen-Stein method (Arratia, Goldstein and Gordon (1989)) + exponential mixing (Philipp (1970)).

• Estimate $d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_\infty^u)$ using second order regular variation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Recall $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$ and $\mathcal{E}_\infty^u \sim Poi(u^{-1})$.

$$ext{Recall} \quad ilde{\mathcal{E}}_n^u \sim extsf{Poi}(np_n) ext{ and } \quad \mathcal{E}_\infty^u \sim extsf{Poi}(u^{-1}).$$

Lemma (8) of Freedman (1974):

$$egin{aligned} &d_{TV}(ilde{\mathcal{E}}_n^u, \mathcal{E}_\infty^u) \leq \left| np_n - u^{-1}
ight| & ext{(soft bound)} \ &= \left| nP(\mathcal{A}_1 \log 2 > un) - u^{-1}
ight| \end{aligned}$$

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall
$$\widetilde{\mathcal{E}}_n^u \sim Poi(np_n)$$
 and $\mathcal{E}_\infty^u \sim Poi(u^{-1})$.

Lemma (8) of Freedman (1974):

$$\begin{aligned} d_{TV}(\tilde{\mathcal{E}}_n^u, \mathcal{E}_\infty^u) &\leq \left| np_n - u^{-1} \right| & \text{(soft bound)} \\ &= \left| nP(A_1 \log 2 > un) - u^{-1} \right| \end{aligned}$$

$$\leq rac{3\log 2}{2u^2}rac{1}{n}$$
 (second order regular variation)

25 / 30

Recall
$$\widetilde{\mathcal{E}}_n^u \sim Poi(np_n)$$
 and $\mathcal{E}_\infty^u \sim Poi(u^{-1})$.

Lemma (8) of Freedman (1974):

$$egin{aligned} &d_{TV}(ilde{\mathcal{E}}_n^u, \mathcal{E}_\infty^u) \leq \left| np_n - u^{-1}
ight| & ext{(soft bound)} \ &= \left| nP(A_1 \log 2 > un) - u^{-1}
ight| \end{aligned}$$

$$\leq \frac{3 \log 2}{2u^2} \frac{1}{n} \qquad (\text{second order regular variation})$$
$$\ll \frac{\ell_n}{n}.$$

Parthanil Roy

April 25, 2019 25 / 30

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

<ロト < 団 > < 臣 > < 臣 > 三 = のへで

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

 $\mathcal{I} := \{1, 2, \ldots, n\}.$

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ○</p>

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

 $\mathcal{I} := \{1, 2, \dots, n\}. \ \{X_i := \mathbb{1}_{(A_i \log 2 > un)} \sim Ber(p_n)\}_{i \in \mathcal{I}} \ (\text{dependent}).$

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < ○ < ○</p>

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

 $\mathcal{I} := \{1, 2, \dots, n\}. \ \{X_i := \mathbb{1}_{(A_i \log 2 > un)} \sim Ber(p_n)\}_{i \in \mathcal{I}} \ (dependent).$ Note that $\mathcal{E}_n^u = \sum_{i \in \mathcal{T}} X_i$.

Sac

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

 $\mathcal{I} := \{1, 2, \dots, n\}. \ \{X_i := \mathbb{1}_{(A_i \log 2 > un)} \sim Ber(p_n)\}_{i \in \mathcal{I}} \ (\text{dependent}).$ Note that $\mathcal{E}_n^u = \sum_{i \in \mathcal{I}} X_i$.

Take $Y_1, Y_2, \ldots, Y_n \stackrel{iid}{\sim} Poi(p_n)$.

Image: Image:

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

 $\mathcal{I} := \{1, 2, \dots, n\}. \ \{X_i := \mathbb{1}_{(A_i \log 2 > un)} \sim Ber(p_n)\}_{i \in \mathcal{I}} \ (dependent).$ Note that $\mathcal{E}_n^u = \sum_{i \in \mathcal{T}} X_i$.

Take
$$Y_1, Y_2, \ldots, Y_n \stackrel{iid}{\sim} Poi(p_n)$$
. Therefore $\tilde{\mathcal{E}}_n^u \stackrel{\mathcal{L}}{=} \sum_{i \in I} Y_i$.

Sac

Image: A matrix of the second seco

Recall
$$\mathcal{E}_n^u = \sum_{i=1}^n \mathbb{1}_{(A_i \log 2 > un)}$$
 and $\tilde{\mathcal{E}}_n^u \sim Poi(np_n)$.

 $\mathcal{I} := \{1, 2, \dots, n\}. \ \{X_i := \mathbb{1}_{(A_i \log 2 > un)} \sim Ber(p_n)\}_{i \in \mathcal{I}} \ (\text{dependent}).$ Note that $\mathcal{E}_n^u = \sum_{i \in \mathcal{I}} X_i$.

Take
$$Y_1, Y_2, \ldots, Y_n \stackrel{iid}{\sim} Poi(p_n)$$
. Therefore $\tilde{\mathcal{E}}_n^u \stackrel{\mathcal{L}}{=} \sum_{i \in I} Y_i$.

$$d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u) = d_{TV}\left(\sum_{i \in \mathcal{I}} X_i, \sum_{i \in \mathcal{I}} Y_i\right) \leq ??$$

- イロト イロト イヨト イヨト - ヨー - - のへで

 $\{X_i \sim Ber(\pi_i)\}_{i \in \mathcal{I}}$ (possibly dependent).

 $\{Y_i \sim Poi(\pi_i)\}_{i \in \mathcal{I}}$ (independent).

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\{X_i \sim Ber(\pi_i)\}_{i \in \mathcal{I}}$ (possibly dependent).

 $\{Y_i \sim Poi(\pi_i)\}_{i \in \mathcal{I}}$ (independent).

For each $i \in \mathcal{I}$, there exists a subset $B_i \subseteq \mathcal{I}$ such that $i \in B_i$ and X_i is "nearly independent" of $\{X_j : j \in \mathcal{I} \setminus B_i\}$.

 $\{X_i \sim Ber(\pi_i)\}_{i \in \mathcal{I}}$ (possibly dependent).

 $\{Y_i \sim Poi(\pi_i)\}_{i \in \mathcal{I}}$ (independent).

For each $i \in \mathcal{I}$, there exists a subset $B_i \subseteq \mathcal{I}$ such that $i \in B_i$ and X_i is "nearly independent" of $\{X_j : j \in \mathcal{I} \setminus B_i\}$.

$$b_1 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i} \pi_i \pi_j, \quad b_2 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i \setminus \{i\}} E(X_i X_j),$$

 $\{X_i \sim Ber(\pi_i)\}_{i \in \mathcal{I}}$ (possibly dependent).

 $\{Y_i \sim Poi(\pi_i)\}_{i \in \mathcal{I}}$ (independent).

For each $i \in \mathcal{I}$, there exists a subset $B_i \subseteq \mathcal{I}$ such that $i \in B_i$ and X_i is "nearly independent" of $\{X_j : j \in \mathcal{I} \setminus B_i\}$.

$$b_1 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i} \pi_i \pi_j, \quad b_2 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i \setminus \{i\}} E(X_i X_j),$$

 $b_3 := \sum_{i \in \mathcal{I}} E\Big[\Big|E(X_i - \pi_i \,\Big|\, \{X_j : j \in \mathcal{I} \setminus B_j\}\Big)\Big|\Big].$

 $\{X_i \sim Ber(\pi_i)\}_{i \in \mathcal{I}}$ (possibly dependent).

 $\{Y_i \sim Poi(\pi_i)\}_{i \in \mathcal{I}}$ (independent).

For each $i \in \mathcal{I}$, there exists a subset $B_i \subseteq \mathcal{I}$ such that $i \in B_i$ and X_i is "nearly independent" of $\{X_j : j \in \mathcal{I} \setminus B_i\}$.

$$egin{aligned} b_1 &:= \sum_{i \in \mathcal{I}} \sum_{j \in B_i} \pi_i \pi_j, \quad b_2 &:= \sum_{i \in \mathcal{I}} \sum_{j \in B_i \setminus \{i\}} E(X_i X_j), \ b_3 &:= \sum_{i \in \mathcal{I}} E\Big[ig| E(X_i - \pi_i ig| \{X_j : j \in \mathcal{I} \setminus B_j\} ig) ig| \Big]. \ iggin{aligned} & \left[d_{TV}igg(\sum_{i \in \mathcal{I}} X_i \,, \, \sum_{i \in \mathcal{I}} Y_i igg) \leq 4b_1 + 4b_2 + 2b_3 \end{matrix}
ight] \end{aligned}$$

・ロト・(中ト・(中ト・(中下・(日下)))

 $\{X_i \sim Ber(\pi_i)\}_{i \in \mathcal{I}}$ (possibly dependent).

 $\{Y_i \sim Poi(\pi_i)\}_{i \in \mathcal{I}}$ (independent).

For each $i \in \mathcal{I}$, there exists a subset $B_i \subseteq \mathcal{I}$ such that $i \in B_i$ and X_i is "nearly independent" of $\{X_j : j \in \mathcal{I} \setminus B_i\}$.

$$b_1 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i} \pi_i \pi_j, \qquad b_2 := \sum_{i \in \mathcal{I}} \sum_{j \in B_i \setminus \{i\}} E(X_i X_j),$$
$$b_3 := \sum_{i \in \mathcal{I}} E\Big[\big| E(X_i - \pi_i \, \big| \, \{X_j : j \in \mathcal{I} \setminus B_j\} \big) \big| \Big].$$

$$d_{TV}(\mathcal{E}_n^u, \tilde{\mathcal{E}}_n^u) = d_{TV}\left(\sum_{i \in \mathcal{I}} X_i, \sum_{i \in \mathcal{I}} Y_i\right) \leq 4b_1 + 4b_2 + 2b_3$$

<ロト < 母 ト < 臣 ト < 臣 ト 三 三 の Q ()

After carefully choosing the B_i 's ...

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ○</p>

After carefully choosing the B_i 's ...

• b_1 can be bounded easily, and

After carefully choosing the B_i 's ...

- b_1 can be bounded easily, and
- the bounds on b₂ and b₃ need the following exponential mixing property of A_i's:

프 - 프

After carefully choosing the B_i 's ...

- b₁ can be bounded easily, and
- the bounds on b₂ and b₃ need the following exponential mixing property of A_i's:

Theorem (Philipp (1970))

There exists C > 0 and $\theta > 1$ such that for all $m, n \in \mathbb{N}$, for all $F \in \sigma(A_1, A_2, \dots, A_m)$, and for all $H \in \sigma(A_{m+n}, A_{m+n+1}, \dots)$,

 $|P(F \cap H) - P(F)P(H)| \le C\theta^{-n} P(F)P(H).$

Thank You Very Much

<ロト < 団 > < 臣 > < 臣 > 三 = のへで