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Regular continued fractions

7

24

=
1

24/7
=

1

3 + 3

7

=
1

3 + 1

7/3

=
1

3 + 1

2+ 1
3

:= [3, 2, 3]

Note that 7 > 3 > 1.

Therefore by Euclidean Algorithm, any rational number

ω = p/q ∈ (0, 1)

(with gcd(p, q) = 1) will have a terminating (regular) continued
fraction expansion.
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Conversely . . .

Whenever A1,A2,A3,A4 ∈ N,

[A1,A2,A3,A4] :=
1

A1 + 1

A2+
1

A3+
1
A4

∈ (0, 1)

is a rational number.

More generally, by induction on n,

ω = [A1,A2, . . .An]

(with A1,A2, . . .An ∈ N) is a rational number in (0, 1).
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Non-terminating continued fraction expansion

Theorem
A number ω ∈ (0, 1) has a unique non-terminating continued fraction
expansion

ω =
1

A1 + 1

A2+
1

A3+···

=: [A1,A2,A3, . . .]

(with each Ai ∈ N) if and only if ω /∈ Q.

Furthermore in this case,
the nth truncate [A1,A2, . . .An]→ ω as n→∞.

Canonical rational approximation: ω ≈ [A1,A2, . . .An].

Examples: π ≈ 22

7
and π ≈ 355

113
.
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Why continued fractions?

Continued fractions are important in algebra, analysis, combinatorics,
ergodic theory, geometry, number theory, probability, etc..

See, for example, Khintchine (1964).
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For an irrational ω ∈ (0, 1)

ω =
1

1/ω
=

1

[1/ω] + {1/ω}
=:

1

A1(ω) + T (ω)

=
1

A1(ω) + 1

A1(T (ω))+T 2(ω)

=:
1

A1(ω) + 1

A2(ω)+T 2(ω)

= · · ·
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The Gauss map

Take Ω = (0, 1), A = B(0,1).

De�ne T : Ω→ Ω and A1 : Ω→ N by

T (ω) = {1/ω} (Gauss map) and A1(ω) = [1/ω]

for irrational ω ∈ Ω (and any way you like for rational ω ∈ Ω).

For all j ∈ N, set Aj+1(ω) := A1(T j(ω)), ω ∈ Ω. Then for almost all
ω ∈ Ω (namely, for all ω ∈ Ω \Q),

ω = [A1(ω),A2(ω),A3(ω), . . .].

Quick Observation: T , A1 measurable ⇒ each An measurable.
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Gauss dynamical system

Take Ω = (0, 1), A = B(0,1). De�ne T : Ω→ Ω and A1 : Ω→ N by

T (ω) = {1/ω} (Gauss map) and A1(ω) = [1/ω].

Bad News: T does not preserve the Lebesgue measure on (0, 1).

De�ne a probability measure P (Gauss measure) on (Ω,A) by

P(A) =

∫
A

1

(1 + x) log 2
dx .

Theorem (Gauss)

T preserves P , i.e., for all A ∈ A, P(A) = P(T−1(A)).

(Ω,A,P ,T ) = the Gauss dynamical system.
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A reformulation of Gauss's theorem

Exercise (in Probability Theory II): Suppose X is a random
variable having probability density function

fX (x) =
1

(1 + x) log 2
, x ∈ (0, 1).

Then show that {1/X} L= X .

Parthanil Roy CF and EVT April 25, 2019 9 / 30



A stationary process

Take Ω = (0, 1), A = B(0,1), P(dx) = ((1 + x) log 2)−1 dx .

De�ne
T : Ω→ Ω by T (ω) = {1/ω} and A1 : Ω→ N by A1(ω) = [1/ω].

For all j ∈ N, set Aj+1(ω) := A1(T j(ω)), ω ∈ Ω.

This de�nes a sequence {An : Ω→ N}n≥1 of positive integer-valued
random variables on the probability space (Ω,A,P).

An = nth digit in the regular continued fraction expansion of a
random number ω ∈ (0, 1) chosen according to the law P .

T preserves P ⇒ {An} is a strictly stationary process. In particular,
A1,A2,A3, . . . are identically distributed.
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Two easy observations

Direct Computation: For all m ∈ N,

P(A1 ≥ m) =
1

log 2
log

(
1 +

1

m

)

∼ 1

m log 2
(as m→∞).

For all u > 0,

P

(
A1 log 2

n
> u

)
= P

(
A1 ≥

⌈
un

log 2

⌉)
∼ 1

un

as n→∞. In particular,

nP

(
A1 log 2

n
> u

)
→ u−1

(A1 is regularly varying with index 1).
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If A1,A2,A3, . . . were independent

then

1(A1 log 2>un), 1(A2 log 2>un), 1(A3 log 2>un), . . .
iid∼ Ber(pn),

where pn = P(A1 log 2 > un)

∼ 1

un
.

Therefore for all u > 0,

Eun := #{1 ≤ j ≤ n : Aj log 2 > un} =
n∑

j=1

1(Aj log 2>un)∼ Bin(n, pn)

L−→ Eu∞ ∼ Poi(u−1)

as n→∞.
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Doeblin-Iosifescu asymptotics

Theorem (Doeblin (1940), Iosifescu (1977))

For all u > 0,

Eun := #{1 ≤ j ≤ n : Aj log 2 > un} L−→ Eu∞ ∼ Poi(u−1)

as n→∞.

Corollary (Main result of Galambos (1972))

Let M
(1)
n := max{Ai log 2 : 1 ≤ 1 ≤ n}, n ∈ N. Then for all u > 0,

P

(
M

(1)
n

n
≤ u

)
→ e−u

−1

as n→∞.
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The main question

Theorem (Doeblin (1940), Iosifescu (1977))

For all u > 0,

(DI ) Eun := #{1 ≤ j ≤ n : Aj log 2 > un} L−→ Eu∞ ∼ Poi(u−1)

as n→∞.

Question
What is the rate of convergence in (DI )?
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Why do we care?

Can estimate the rate of convergence of scaled maxima sequence
M

(1)
n /n (as in Galambos (1972)) - signi�cantly improves a result

of Philipp (1976).

Rate of convergence for the scaled k th maxima for any k ∈ N
(uniform over k).

A tiny detour of our proof recovers a result of
Tyran-Kami«ska (2010) on the weak convergence of the
corresponding extremal point process. (Inspired by Chiarini,
Cipriani and Hazra (2015).)

Rate of convergence of the scaled maxima for the geodesic �ow
on the modular surface.
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The geodesic �ow on the modular surface

The group SL2(Z) :=

{(
a b
c d

)
: a, b, c , d ∈ Z, ad − bc = 1

}
acts isometrically on H := {z ∈ C : Im(z) > 0} by rational
transformations: (

a b
c d

)
.z =

az + b

cz + d
.

Series (1981, 1985): Connected the geodesic �ow on M = H/SL2(Z)
with Gauss dynamical system using a symbolic dynamics.

Pollicott (2009): Used this connection to �nd the weak limit of the
normalized maxima of the geodesic �ow on M .

Our work yields the rate of convergence in Pollicott's result.
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The main result

Theorem (Ghosh, Kirsebom, R. (2019))

There exists κ > 0 and a sequence 1� `n � nε (for all ε > 0) such
that for all u > 0 and for all n ∈ N,

dTV (Eun , Eu∞) := sup
A⊆N∪{0}

∣∣P(Eun ∈ A)−P(Eu∞ ∈ A)
∣∣ ≤ κ

min {u, u2}
`n
n
.

Corollary

Suppose M
(k)
n := k th maximum of {Ai log 2 : 1 ≤ i ≤ n}. For all

u > 0 and for all k , n ∈ N,

sup
k∈N

∣∣∣∣∣P
(
M

(k)
n

n
≤ u

)
− e−u

−1
k−1∑
i=0

u−i

i !

∣∣∣∣∣ ≤ κ

min {u, u2}
`n
n
.
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Comparison with existing results

Resnick and de Haan (1989): If A1,A2, . . . were independent,
then ∣∣∣P (M (1)

n /n ≤ u
)
− e−u

−1
∣∣∣≤ O(1/n).

Our upper bound = O(`n/n) = o
(
n−1+ε

)
for all ε > 0.

Philipp (1976): For Gauss dynamical system∣∣∣P (M (1)
n /n ≤ u

)
− e−u

−1
∣∣∣ ≤ O(`n/n)�O

(
exp
{
−(log n)δ

})
for all δ ∈ (0, 1).

Parthanil Roy CF and EVT April 25, 2019 18 / 30



Comparison with existing results

Resnick and de Haan (1989): If A1,A2, . . . were independent,
then ∣∣∣P (M (1)

n /n ≤ u
)
− e−u

−1
∣∣∣≤ O(1/n).

Our upper bound = O(`n/n) = o
(
n−1+ε

)
for all ε > 0.

Philipp (1976): For Gauss dynamical system∣∣∣P (M (1)
n /n ≤ u

)
− e−u

−1
∣∣∣ ≤ O(`n/n)�O

(
exp
{
−(log n)δ

})
for all δ ∈ (0, 1).

Parthanil Roy CF and EVT April 25, 2019 18 / 30



Comparison with existing results

Resnick and de Haan (1989): If A1,A2, . . . were independent,
then ∣∣∣P (M (1)

n /n ≤ u
)
− e−u

−1
∣∣∣≤ O(1/n).

Our upper bound = O(`n/n) = o
(
n−1+ε

)
for all ε > 0.

Philipp (1976): For Gauss dynamical system∣∣∣P (M (1)
n /n ≤ u

)
− e−u

−1
∣∣∣ ≤ O(`n/n)�O

(
exp
{
−(log n)δ

})
for all δ ∈ (0, 1).

Parthanil Roy CF and EVT April 25, 2019 18 / 30



Comparison with existing results

Resnick and de Haan (1989): If A1,A2, . . . were independent,
then ∣∣∣P (M (1)

n /n ≤ u
)
− e−u

−1
∣∣∣≤ O(1/n).

Our upper bound = O(`n/n) = o
(
n−1+ε

)
for all ε > 0.

Philipp (1976): For Gauss dynamical system∣∣∣P (M (1)
n /n ≤ u

)
− e−u

−1
∣∣∣ ≤ O(`n/n)�O

(
exp
{
−(log n)δ

})
for all δ ∈ (0, 1).

Parthanil Roy CF and EVT April 25, 2019 19 / 30



Sketch of proof

Recall Eun =
∑n

j=1
1(Aj log 2>un)

approx∼ Bin
(
n, pn = P(A1 log 2 > un)

)
.

De�ne an intermediate random variable Ẽun ∼ Poi(npn).

On the other hand, Eu∞ ∼ Poi(u−1).

• Use triangle inequality

dTV (Eun , Eu∞) ≤ dTV (Eun , Ẽun ) + dTV (Ẽun , Eu∞).

• Bound dTV (Eun , Ẽun ) using Chen-Stein method (Arratia, Goldstein
and Gordon (1989)) + exponential mixing (Philipp (1970)).

• Estimate dTV (Ẽun , Eu∞) using second order regular variation.
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How to estimate dTV (Ẽun , Eu∞)?

Recall Ẽun ∼ Poi(npn) and Eu∞ ∼ Poi(u−1).

Lemma (8) of Freedman (1974):

dTV (Ẽun , Eu∞) ≤
∣∣npn − u−1

∣∣ (soft bound)

=
∣∣nP(A1 log 2 > un)− u−1

∣∣
≤ 3 log 2

2u2
1

n
(second order regular variation)

� `n
n
.
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How to bound dTV (Eun , Ẽun )?

Recall Eun =
∑n

i=1
1(Ai log 2>un) and Ẽun ∼ Poi(npn).

I := {1, 2, . . . , n}. {Xi := 1(Ai log 2>un) ∼ Ber(pn)}i∈I (dependent).
Note that Eun =

∑
i∈I Xi .

Take Y1,Y2, . . . ,Yn
iid∼ Poi(pn). Therefore Ẽun

L
=
∑

i∈I Yi .

dTV (Eun , Ẽun ) = dTV

(∑
i∈I

Xi ,
∑
i∈I

Yi

)
≤ ??
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dTV (Eun , Ẽun ) = dTV

(∑
i∈I

Xi ,
∑
i∈I

Yi

)
≤ ??

Parthanil Roy CF and EVT April 25, 2019 26 / 30



How to bound dTV (Eun , Ẽun )?
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Arratia, Goldstein and Gordon (1989)

{Xi ∼ Ber(πi)}i∈I (possibly dependent).

{Yi ∼ Poi(πi)}i∈I (independent).

For each i ∈ I, there exists a subset Bi ⊆ I such that i ∈ Bi and
Xi is �nearly independent� of {Xj : j ∈ I \ Bi}.

b1 :=
∑
i∈I

∑
j∈Bi

πiπj , b2 :=
∑
i∈I

∑
j∈Bi\{i}

E (XiXj),

b3 :=
∑
i∈I

E
[∣∣E (Xi − πi

∣∣ {Xj : j ∈ I \ Bj}
)∣∣].

dTV

(∑
i∈I

Xi ,
∑
i∈I

Yi

)
≤ 4b1 + 4b2 + 2b3
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How to bound b1, b2, b3?

After carefully choosing the Bi 's . . .

b1 can be bounded easily, and

the bounds on b2 and b3 need the following exponential mixing
property of Ai 's:

Theorem (Philipp (1970))

There exists C > 0 and θ > 1 such that for all m, n ∈ N, for all
F ∈ σ(A1,A2, . . . ,Am), and for all H ∈ σ(Am+n,Am+n+1, . . .),

|P(F ∩ H)− P(F )P(H)| ≤ Cθ−n P(F )P(H).
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Thank You Very Much
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