Research Awards Screening Test, 2006 KEY

Section 1: Algebra

$1.1 \mathrm{a}, \mathrm{b}, \mathrm{c}$
$1.2 \mathrm{~b}, \mathrm{c}$
1.3 c
$1.40,5,8,9$
1.5 с
1.612
1.7 Any matrix of the form: $(a, b$ and c all non-zero)

$$
\left[\begin{array}{ccc}
a & b & c / 2 \\
0 & b & c \\
0 & 0 & c / 3
\end{array}\right]
$$

$1.8 \mathrm{a}, \mathrm{b}$
$1.9 \mathrm{~b}, \mathrm{c}$
$1.10 \mathrm{~b}, \mathrm{c}, \mathrm{d}$

Section 2: Analysis

2.1 $C=\cap_{n=1}^{\infty} A_{n}$
$2.22 n \int_{0}^{x}(2 x-t)^{n-1} f(t) d t+x^{n} f(x)$
2.3 a
2.4 b
$2.5 \mathrm{~b}, \mathrm{c}$
$2.6 b \frac{\partial g}{\partial x}=a \frac{\partial g}{\partial y}$.
$2.7\left(\frac{1}{2^{\frac{1}{3}}},-\frac{1}{2^{\frac{1}{3}}}\right)$.
$2.8 e^{-\frac{1}{k}}$.
2.9 All integers
$2.10\left[\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right)\right)^{2}+\left(\frac{\partial f}{\partial y}\left(x_{0}, y_{0}, z_{0}\right)\right)^{2}+\left(\frac{\partial f}{\partial z}\left(x_{0}, y_{0}, z_{0}\right)\right)^{2}\right]^{\frac{1}{2}}$

Section 3: Topology

3.1 (i) continuous at all irrationals, (ii) continuous only at $t=1$
$3.2 f(a)=g(a)$
$3.3 A$ and B have the same cardinality
3.4 (i) $f(D)$ is necessarily an interval; (ii) $[a, b]$
3.5 (i) X_{α} is connected if and only if $\alpha \leq \frac{3}{4}$. (ii) When not connected, it has 3 components
$3.6 X_{2}$ and X_{4} are homeomorphic
3.7 Compact sets are X_{2} and X_{3}
3.8 Locally compact sets are X_{1}, X_{2} and X_{3}
3.9 Complete metric spaces are X_{1}, X_{2} and X_{3}
$3.10 X_{2}$

Section 4: Applied Mathematics

$4.1 \frac{3}{4} \sqrt{\pi}$
4.20
$4.3 \quad \frac{12 \pi}{5} a^{6}$
4.43
$4.5 \mathrm{~b}, \mathrm{c}$
$4.6 c=2$
4.7 elliptic in the region $\left\{(x, y) \in \mathbb{R}^{2}: y<0\right\}$
$4.8 \pi / 5$
$4.9 \mathrm{a}, \mathrm{b}, \mathrm{d}$
4.10 A linear functional in 3 variables with coefficients $6,-6$ and -4 ; example: $6 w_{1}-6 w_{2}-4 w_{3}$

Section 5: Miscellaneous

$5.1 m$ and n are coprime
5.20
$5.3 n(n-1) 2^{n-2}$
5.42^{-7}
5.52
5.6 there is no solution
5.7 [$0,1 / 2]$ for each k
5.8 Yes; if $K=\left\{a_{1}, \ldots, a_{n}\right\}$, then take $\left(x-a_{1}\right) \ldots\left(x-a_{n}\right)+1$, for example.
$5.92 e$
5.10 a, c

