NATIONAL BOARD FOR HIGHER MATHEMATICS

Research Awards Screening Test
February 25, 2006
Time Allowed: 90 Minutes
Maximum Marks: 40

Please read, carefully, the instructions on the following page before you write anything on this booklet

NAME:	ROLL No.:
Institution	

(For Official Use)
Sec. 1
Sec. 2
Sec. 3
Sec. 4
Sec. 5
TOTAL

INSTRUCTIONS TO CANDIDATES

- Do not forget to write your name and roll number on the cover page. In the box marked 'Institution', fill in the name of the institution where you are working towards a Ph.D. degree. In case you have not yet joined any institution for research, write Not Applicable.
- Please ensure that your answer booklet contains 16 numbered (and printed) pages. The back of each printed page is blank and can be used for rough work.
- There are five sections, containing ten questions each, entitled Algebra, Analysis, Topology, Applied Mathematics and Miscellaneous. Answer as many questions as possible. The assessment of the paper will be based on the best four sections. Each question carries one point and the maximum marks to be scored is forty.
- Answer each question, as directed, in the space provided at the end of it. Answers are to be given in the form of a word (or words, if required), a numerical value (or values) or a simple mathematical expression. Do not write sentences.
- In certain questions you are required to pick out the qualifying statement(s) from multiple choices. None of the statements, or more than one statement may qualify. Write none if none of the statements qualify, or list the labels of all the qualifying statements (amongst (a), (b), (c) and (d)).
- Points will be awarded in the above questions only if all the correct choices are made. There will be no partial credit.
- \mathbb{N} denotes the set of natural numbers, \mathbb{Z} - the integers, \mathbb{Q} - the rationals, \mathbb{R} - the reals and \mathbb{C} - the field of complex numbers. \mathbb{R}^{n} denotes the n-dimensional Euclidean space, which is assumed to be endowed with its 'usual' topology. The symbol $] a, b[$ will stand for the open interval $\{x \in \mathbb{R} \mid a<x<b\}$ while $[a, b]$ will stand for the corresponding closed interval; $[a, b[$ and $] a, b]$ will stand for the corresponding left-closed-right-open and left-open-right-closed intervals respectively. The symbol I will denote the identity matrix of appropriate order.

Section 1: Algebra

1.1 Let $f:(\mathbb{Q},+) \rightarrow(\mathbb{Q},+)$ be a non-zero homomorphism. Pick out the true statements:
a. f is always one-one.
b. f is always onto.
c. f is always a bijection.
d. f need be neither one-one nor onto.

Answer:

1.2 Consider the element

$$
\alpha=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 1 & 4 & 5 & 3
\end{array}\right)
$$

of the symmetric group S_{5} on five elements. Pick out the true statements:
a. The order of α is 5 .
b. α is conjugate to

$$
\left(\begin{array}{lllll}
4 & 5 & 2 & 3 & 1 \\
5 & 4 & 3 & 1 & 2
\end{array}\right)
$$

c. α is the product of two cycles.
d. α commutes with all elements of S_{5}.

Answer:

1.3 Let G be a group of order 60 . Pick out the true statements:
a. G is abelian.
b. G has a subgroup of order 30 .
c. G has subgroups of order 2,3 and 5 .
d. G has subgroups of order 6,10 and 15 .

Answer:

1.4 Consider the polynomial ring $R[x]$ where $R=\mathbb{Z} / 12 \mathbb{Z}$ and write the elements of R as $\{0,1, \cdots, 11\}$. Write down all the distinct roots of the polynomial $f(x)=x^{2}+7 x$ of $R[x]$.

Answer:

1.5 Let R be the polynomial ring $\mathbb{Z}_{2}[x]$ and write the elements of \mathbb{Z}_{2} as $\{0,1\}$. Let $(f(x))$ denote the ideal generated by the element $f(x) \in R$. If $f(x)=x^{2}+x+1$, then the quotient ring $R /(f(x))$ is
a. a ring but not an integral domain.
b. an integral domain but not a field.
c. a finite field of order 4.
d. an infinite field.

Answer:

1.6 Consider the set of all linear transformations $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ over \mathbb{R}. What is the dimension of this set, considered as a vector space over \mathbb{R} with pointwise operations?

Answer:

1.7 Consider the matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 3\end{array}\right]$. Write down a matrix P such that $P^{-1} A P$ is a diagonal matrix.

Answer : $P=$
1.8 Let A be an orthogonal 3×3 matrix with real entries. Pick out the true statements:
a. The determinant of A is a rational number.
b. $\quad d(A x, A y)=d(x, y)$ for any two vectors x and $y \in \mathbb{R}^{3}$, where $d(u, v)$ denotes the usual Euclidean distance between vectors u and $v \in \mathbb{R}^{3}$.
c. All the entries of A are positive.
d. All the eigenvalues of A are real.

Answer:

1.9 Pick out the correct statements from the following list:
a. A homomorphic image of a UFD (unique factorization domain) is again a UFD.
b. The element $2 \in \mathbb{Z}[\sqrt{-5}]$ is irreducible in $\mathbb{Z}[\sqrt{-5}]$.
c. Units of the ring $\mathbb{Z}[\sqrt{-5}]$ are the units of \mathbb{Z}.
d. The element 2 is a prime element in $\mathbb{Z}[\sqrt{-5}]$.

Answer:

1.10 Let p and q be two distinct primes. Pick the correct statements from the following:
a. $\mathbb{Q}(\sqrt{p})$ is isomorphic to $\mathbb{Q}(\sqrt{q})$ as fields.
b. $\mathbb{Q}(\sqrt{p})$ is isomorphic to $\mathbb{Q}(\sqrt{-q})$ as vector spaces over \mathbb{Q}.
c. $[\mathbb{Q}(\sqrt{p}, \sqrt{q}): \mathbb{Q}]=4$.
d. $\mathbb{Q}(\sqrt{p}, \sqrt{q})=\mathbb{Q}(\sqrt{p}+\sqrt{q})$.

Answer:

Section 2: Analysis

2.1 Let f be a real valued function on \mathbb{R}. Consider the functions

$$
w_{j}(x)=\sup \left\{|f(u)-f(v)|: u, v \in\left[x-\frac{1}{j}, x+\frac{1}{j}\right]\right\}
$$

where j is a positive integer and $x \in \mathbb{R}$. Define next,

$$
A_{j, n}=\left\{x \in \mathbb{R}: w_{j}(x)<\frac{1}{n}\right\}, n=1,2, \ldots
$$

and

$$
A_{n}=\cup_{j=1}^{\infty} A_{j, n}, n=1,2, \ldots
$$

Now let

$$
C=\{x \in \mathbb{R}: f \text { is continuous at } x\} .
$$

Express C in terms of the sets A_{n}.

Answer:

2.2 Let f be a continuous real valued function on \mathbb{R} and n, a positive integer. Find

$$
\frac{d}{d x} \int_{0}^{x}(2 x-t)^{n} f(t) d t
$$

Answer:

2.3 For each $n \geq 1$, let f_{n} be a monotonic increasing real valued function on $[0,1]$ such that the sequence of functions $\left\{f_{n}\right\}$ converges pointwise to the function $f \equiv 0$. Pick out the true statements from the following:
a. f_{n} converges to f uniformly.
b. If the functions f_{n} are also non-negative, then f_{n} must be continuous for sufficiently large n.

Answer:

2.4 Let \mathbb{Q} denote the set of all rational numbers in the open interval $] 0,1[$. Let $\lambda(U)$ denote the Lebesgue measure of a subset U of $] 0,1[$. Pick out the correct statements from the following:
a. $\lambda(U)=1$ for every open set $U \subset] 0,1[$ which contains \mathbb{Q}.
b. Given any $\varepsilon>0$, there exists an open set $U \subset] 0,1[$ containing \mathbb{Q} such that $\lambda(U)<\varepsilon$.

Answer:

2.5 A real valued function on an interval $[a, b]$ is said to be a function of bounded variation if there exists $M>0$, such that for any finite set of points $a=a_{0}<a_{1}<a_{2}<\ldots<a_{n}=b$, we have $\sum_{i=0}^{n-1}\left|f\left(a_{i}\right)-f\left(a_{i+1}\right)\right|<M$. Which of the following statements are necessarily true?
a. Any continuous function on $[0,1]$ is of bounded variation.
b. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable, then its restriction to the interval $[-n, n]$ is of bounded variation on that interval, for any positive integer n.
c. Any monotone function on $[0,1]$ is of bounded variation.

Answer:

2.6 Let f be a differentiable function of one variable and let g be the function of two variables given by $g(x, y)=f(a x+b y)$, where a, b are fixed nonzero numbers. Write down a partial differential equation satisfied by the function g.

Answer:

2.7 The curve $x^{3}-y^{3}=1$ is asymptotic to the line $x=y$. Find the point on the curve farthest from the line $x=y$.

Answer:

2.8 Let k be a fixed positive integer. Find R_{k}, the radius of convergence of the power series $\sum\left(\frac{n+1}{n}\right)^{n^{2}} z^{k n}$.

Answer:

2.9 let γ be a closed and continuously differentiable path in the upper half plane

$$
\{z \in \mathbb{C}: z=x+i y, x, y \in \mathbb{R}, y>0\}
$$

not passing through the point i. Describe the set of all possible values of the integral

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{2 i}{z^{2}+1} d z
$$

Answer:

2.10 Let f be a function of three (real) variables having continuous partial derivatives. For each direction vector $h=\left(h_{1}, h_{2}, h_{3}\right)$ such that $h_{1}^{2}+h_{2}^{2}+h_{3}^{2}=$ 1 , let $D_{h} f(x, y, z)$ be the directional derivative of f along h at (x, y, z). For a point $\left(x_{0}, y_{0}, z_{0}\right)$ where the partial derivative $\frac{\partial}{\partial x} f\left(x_{0}, y_{0}, z_{0}\right)$ is not zero, maximize $D_{h} f\left(x_{0}, y_{0}, z_{0}\right)$ (as a function of h).

Answer: The maximum value $=$

Section 3: Topology

3.1 Let f be the function on \mathbb{R} defined by $f(t)=\frac{p+\sqrt{2}}{q+\sqrt{2}}-\frac{p}{q}$ if $t=\frac{p}{q}$ with $p, q \in \mathbb{Z}$ and p and q coprime to each other, and $f(t)=0$ if t is irrational. Answer the following: i) At which irrational numbers t is f is continuous? ii) At which rational numbers t is f continuous?

Answer: i) The set of irrational t where f is continuous:
ii) The set of rational t where f is continuous:
3.2 Let f and g be two continuous functions on \mathbb{R}. For any $a \in \mathbb{R}$ we define $J_{a}(f, g)$ to be the function given by $J_{a}(f, g)(t)=f(t)$ for all $t \leq a$ and $J_{a}(f, g)(t)=g(t)$ if $t>a$. For what values of a is $J_{a}(f, g)$ a continuous function?

Answer: $J_{a}(f, g)$ is continuous if and only if
3.3 Let A and B be two finite subsets of \mathbb{R}. Describe a necessary and sufficient condition for the spaces $\mathbb{R} \backslash A$ and $\mathbb{R} \backslash B$ to be homeomorphic.

Answer: $\mathbb{R} \backslash A$ and $\mathbb{R} \backslash B$ are homeomorphic if and only if
3.4 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a continuous function. Let D be the closed unit disc in \mathbb{R}^{2}. Is $f(D)$ necessarily and interval in \mathbb{R} ? If it is an interval, which of the forms $] a, b[,[a, b[] a, b$,$] and [a, b]$, with $a, b \in \mathbb{R}$ can it have?

Answer: i) $f(D)$ is necessarily an interval in $\mathbb{R} /$ may not be an interval; ii) Possible form(s) for the interval: \qquad
3.5 For $v \in \mathbb{R}^{2}$ and $r>0$ let $D(v, r)$ denote the closed disc with centre at v and radius r. Let $v=(5,0) \in \mathbb{R}^{2}$. For $\alpha>0$ let X_{α} be the subset

$$
X_{\alpha}=D(-v, 3) \cup D(v, 3) \cup\{(x, \alpha x): x \in \mathbb{R}\} .
$$

Determine the condition on α for X_{α} to be connected; when it is not connected how many connected components does X_{α} have?

Answer: i) X_{α} is connected if and only if
ii) When not connected it has connected components.
3.6 Which two of the following spaces are homeomorphic to each other?
i) $X_{1}=\left\{(x, y) \in \mathbb{R}^{2}: x y=0\right\}$;
ii) $X_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x+y \geq 0\right.$ and $\left.x y=0\right\}$;
iii) $X_{3}=\left\{(x, y) \in \mathbb{R}^{2}: x y=1\right\}$;
iv) $X_{4}=\left\{(x, y) \in \mathbb{R}^{2}: x+y \geq 0\right.$, and $\left.x y=1\right\}$.

Answer The sets \qquad and \qquad are homeomorphic.
3.7 Which of the following spaces are compact?
i) $X_{1}=\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y|<10^{-100}\right\}$;
ii) $X_{2}=\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y| \leq 10^{100}\right\}$;
iii) $X_{3}=\left\{(x, y) \in \mathbb{R}^{2}: 1 \leq x^{2}+y^{2} \leq 2\right\}$;
iv) $X_{4}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right.$ and $\left.x y \neq 0\right\}$.

Answer: Compact subsets from the above are \qquad
3.8 Which of the following spaces are locally compact?
i) $X_{1}=\left\{(x, y) \in \mathbb{R}^{2}: x, y\right.$ odd integers $\}$;
ii) $X_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+103 x y+7 y^{2}>5\right\}$;
iii) $X_{3}=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x<1,0<y \leq 1\right\}$;
iv) $X_{4}=\left\{(x, y) \in \mathbb{R}^{2}: x, y\right.$ irrational $\}$.

Answer: Locally compact spaces from the above are \qquad
3.9 Which of the following metric spaces $\left(X_{i}, d_{i}\right), 1 \leq i \leq 4$, are complete? i) $\left.X_{1}=\right] 0, \pi / 2\left[\subset \mathbb{R}, d_{1}\right.$ defined by $d_{1}(x, y)=|\tan x-\tan y|$ for all $x, y \in X_{1}$.
ii) $X_{2}=[0,1] \subset \mathbb{R}, d_{2}$ defined by $d_{2}(x, y)=\frac{|x-y|}{1+|x-y|}$ for all $x, y \in X_{2}$.
iii) $X_{3}=\mathbb{Q}$, and d_{3} defined by $d_{3}(x, y)=1$ for all $x, y \in X_{3}, x \neq y$.
iv) $X_{4}=\mathbb{R}, d_{4}$ defined by $d_{4}(x, y)=\left|e^{x}-e^{y}\right|$ for all $x, y \in X_{4}$.

Answer: Complete metric spaces from the above are
3.10 On which of the following spaces is every continuous (real-valued) function bounded?
i) $\left.X_{1}=\right] 0,1$;
ii) $X_{2}=[0,1]$;
iii) $X_{3}=[0,1[$;
iv) $X_{4}=\{t \in[0,1]: t$ irrational $\}$.

Answer: Every continuous function on
is bounded (enter all X_{i} with i between 1 and 4 for which the statement holds).

Section 4: Applied Mathematics

4.1 Let $\Gamma(s)$ stand for the usual Gamma function. Given that $\Gamma(1 / 2)=\sqrt{\pi}$, evaluate $\Gamma(5 / 2)$.

Answer:

4.2 Let

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1, z>0\right\} .
$$

Let

$$
C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}
$$

Let τ be the unit tangent vector to C in the $x y$-plane pointing left as we move clockwise along C. Let $\varphi(x, y, z)=x^{2}+y^{3}+z^{4}$. Evaluate:

$$
\int_{C} \nabla \varphi \cdot \tau d s
$$

Answer:

4.3 Let $a>0$ and let

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=a^{2}\right\}
$$

Evaluate:

$$
\iint_{S}\left(x^{4}+y^{4}+z^{4}\right) d S
$$

Answer:

4.4 Let $f(x)=x^{2}-5$ for $x \in \mathbb{R}$. Let $x_{0}=1$. If $\left\{x_{n}\right\}$ denotes the sequence of iterates defined by the Newton-Raphson method to approximate a solution of $f(x)=0$, find x_{1}.

Answer:

4.5 Let A be a 2×2 matrix with real entries. Consider the linear sysytem of ordinary differential equations given in vector notation as:

$$
\frac{d \mathbf{x}}{d t}(t)=A \mathbf{x}(t)
$$

where

$$
\mathbf{x}(t)=\binom{u(t)}{v(t)}
$$

Pick out the cases from the following when we have $\lim _{t \rightarrow \infty} u(t)=0$ and $\lim _{t \rightarrow \infty} v(t)=0$:
a.

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right)
$$

b.

$$
A=\left(\begin{array}{rr}
-1 & 2 \\
0 & -3
\end{array}\right)
$$

c.

$$
A=\left(\begin{array}{ll}
1 & -6 \\
1 & -4
\end{array}\right)
$$

d.

$$
A=\left(\begin{array}{rr}
-1 & -6 \\
1 & 4
\end{array}\right)
$$

Answer:

4.6 Let $\Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}$ denote the Laplace operator. Let

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\} .
$$

Let $\partial \Omega$ denote the boundary of the domain Ω. Consider the following boundary value problem:

$$
\begin{aligned}
\Delta u & =c \text { in } \Omega \\
\frac{\partial u}{\partial \nu} & =1 \text { on } \partial \Omega
\end{aligned}
$$

where c is a real constant and $\partial u / \partial \nu$ denotes the outward normal derivative of u on $\partial \Omega$. For what values of c does the above problem admit a solution?

Answer:

4.7 Consider the Tricomi equation:

$$
\frac{\partial^{2} u}{\partial y^{2}}-y \frac{\partial^{2} u}{\partial x^{2}}=0
$$

Describe the region in the $x y$-plane where this equation is elliptic.

Answer:

4.8 Evaluate:

$$
\iint_{\mathbb{R}^{2}} e^{-(3 x+2 y)^{2}-(4 x+y)^{2}} d x d y
$$

Answer:

4.9 Let J_{p} denote the Bessel function of the first kind, of order p and let $\left\{P_{n}\right\}$ denote the sequence of Legendre polynomials defined on the interval $[-1.1]$. Pick out the true statements from the following:
a. $\frac{d}{d x} J_{o}(x)=-J_{1}(x)$.
b. Between any two positive zeroes of J_{0}, there exists a zero of J_{1}.
c. $P_{n+1}(x)$ can be written as a linear combination of $P_{n}(x)$ and $P_{n-1}(x)$.
d. $P_{n+1}(x)$ can be written as a linear combination of $x P_{n}(x)$ and $P_{n-1}(x)$.

Answer:

4.10 Consider the linear programming problem: Maximize $z=2 x_{1}+3 x_{2}+x_{3}$ such that

$$
\begin{aligned}
4 x_{1}+3 x_{2}+x_{3} & =6 \\
x_{1}+2 x_{2}+5 x_{3} & \geq 4 \\
x_{1}, x_{2}, x_{3} & \geq 0 .
\end{aligned}
$$

Write down the objective function of the dual problem.

Answer:

Section 5: Miscellaneous

5.1 A unimodular matrix is a matrix with integer entries and having determinant 1 or -1 . If m and n are positive integers, write down a necessary and sufficient condition such that there exists a unimodular matrix of order 2 whose first row is the vector (m, n).

Answer:

5.2 For any integer n define $k(n)=\frac{n^{7}}{7}+\frac{n^{3}}{3}+\frac{11 n}{21}+1$ and

$$
f(n)= \begin{cases}0 & \text { if } k(n) \text { an integer } \\ \frac{1}{n^{2}} & \text { if } k(n) \text { is not an integer. }\end{cases}
$$

Find $\sum_{n=-\infty}^{\infty} f(n)$.

Answer:

5.3 Let $n \geq 2$. Evaluate:

$$
\sum_{k=2}^{n} \frac{n!}{(n-k)!(k-2)!}
$$

Answer:

5.4 A fair coin is tossed ten times. What is the probability that we can observe a string of eight heads, in succession, at some time?

Answer:
5.5 Evaluate the product $\prod_{n=2}^{\infty}\left(1+\frac{1}{n^{2}}+\frac{1}{n^{4}}+\frac{1}{n^{6}}+\ldots\right)$.

Answer:
5.6 Find all solutions of the equation

$$
\left(x^{2}+y^{2}+z^{2}-1\right)^{2}+(x+y+z-3)^{2}=0 .
$$

Answer:

5.7 For any real number x, let $f(x)$ denote the distance of x from the nearest integer. Let $I(k)=[k \pi, k \pi+1]$. Find $f(I(k))$ for all integers k.

Answer:

5.8 Let K be a finite field. Can you always find a non-constant polynomial over K which has no root in K ? If yes, give one such polynomial.

Answer: No, there is no such polynomial/ Yes, and one such polynomial is given by:
5.9 Evaluate:

$$
\sum_{k=1}^{\infty} \frac{k^{2}}{k!}
$$

Answer:

5.10 Pick out the countable sets from the following:
a. $\{\alpha \in \mathbb{R}: \alpha$ is a root of a polynomial with integer coefficients $\}$.
b. The complement in \mathbb{R} of the set described in statement (a) above.
c. The set of all points in the plane whose coordinates are rational.
d. Any subset of \mathbb{R} whose Lebesgue measure is zero.

Answer:

