# Regularity for systems with prescribed tangential or normal part 

Swarnendu Sil<br>École Polytechnique Fédérale de Lausanne<br>Lausanne, Switzerland

19th August, 2017
TIFR-CAM
Bangalore, India

## Maxwell's equations in time-harmonic form

Time harmonic Maxwell's equations in three dimensions

$$
\begin{cases}\operatorname{curl} H=i \omega \varepsilon E+J_{e} & \text { in } \Omega, \\ \operatorname{curl} E=-i \omega \mu H+J_{m} & \text { in } \Omega, \\ \nu \times E=\nu \times E_{0} & \text { on } \partial \Omega .\end{cases}
$$

## Maxwell's equations in time-harmonic form

Time harmonic Maxwell's equations in three dimensions

$$
\begin{cases}\operatorname{curl} H=i \omega \varepsilon E+J_{e} & \\ \text { in } \Omega, \\ \operatorname{curl} E=-i \omega \mu H+J_{m} & \\ \text { in } \Omega, \\ \nu \times E=\nu \times E_{0} & \\ \text { on } \partial \Omega .\end{cases}
$$

$E, H$ - unknown;

## Maxwell's equations in time-harmonic form

Time harmonic Maxwell's equations in three dimensions

$$
\begin{cases}\operatorname{curl} H=i \omega \varepsilon E+J_{e} & \\ \text { in } \Omega, \\ \operatorname{curl} E=-i \omega \mu H+J_{m} & \\ \text { in } \Omega, \\ \nu \times E=\nu \times E_{0} & \\ \text { on } \partial \Omega .\end{cases}
$$

$E, H$ - unknown; $E_{0}, J_{e}, J_{m}$ - given vector fields;

## Maxwell's equations in time-harmonic form

Time harmonic Maxwell's equations in three dimensions

$$
\begin{cases}\operatorname{curl} H=i \omega \varepsilon E+J_{e} & \\ \text { in } \Omega, \\ \operatorname{curl} E=-i \omega \mu H+J_{m} & \\ \text { in } \Omega, \\ \nu \times E=\nu \times E_{0} & \\ \text { on } \partial \Omega .\end{cases}
$$

$E, H$ - unknown; $E_{0}, J_{e}, J_{m}$ - given vector fields; $\varepsilon, \mu-3 \times 3$ matrix fields.

## Maxwell's equations in time-harmonic form

Time harmonic Maxwell's equations in three dimensions

$$
\begin{cases}\text { curl } H=i \omega \varepsilon E+J_{e} & \text { in } \Omega, \\ \operatorname{curl} E=-i \omega \mu H+J_{m} & \\ \text { in } \Omega, \\ \nu \times E=\nu \times E_{0} & \\ \text { on } \partial \Omega .\end{cases}
$$

$E, H$ - unknown; $E_{0}, J_{e}, J_{m}$ - given vector fields; $\varepsilon, \mu-3 \times 3$ matrix fields.

Eliminating $H$ and writting as a system in $E$, we obtain,

$$
\left\{\begin{aligned}
\operatorname{curl}\left(\mu^{-1} \operatorname{curl} E\right) & =\omega^{2} \varepsilon E-i \omega J_{e}+\operatorname{curl}\left(\mu^{-1} J_{m}\right) & & \text { in } \Omega, \\
\operatorname{div}(\varepsilon E) & =\frac{i}{\omega} \operatorname{div} J_{e} & & \text { in } \Omega, \\
\nu \times E & =\nu \times E_{0} & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

## Maxwell's equations in time-harmonic form

Time harmonic Maxwell's equations in three dimensions

$$
\begin{cases}\operatorname{curl} H=i \omega \varepsilon E+J_{e} & \\ \text { in } \Omega, \\ \operatorname{curl} E=-i \omega \mu H+J_{m} & \\ \text { in } \Omega, \\ \nu \times E=\nu \times E_{0} & \\ \text { on } \partial \Omega .\end{cases}
$$

$E, H$ - unknown; $E_{0}, J_{e}, J_{m}$ - given vector fields; $\varepsilon, \mu-3 \times 3$ matrix fields.

Eliminating $H$ and writting as a system in $E$, we obtain,

$$
\left\{\begin{aligned}
\operatorname{curl}\left(\mu^{-1} \operatorname{curl} E\right) & =\omega^{2} \varepsilon E-i \omega J_{e}+\operatorname{curl}\left(\mu^{-1} J_{m}\right) & & \text { in } \Omega, \\
\operatorname{div}(\varepsilon E) & =\frac{i}{\omega} \operatorname{div} J_{e} & & \text { in } \Omega, \\
\nu \times E & =\nu \times E_{0} & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

$H$ satisfies similar system with prescribed normal part on the boundary.

## Poisson problem for the Hodge Laplacian

Hodge Laplcian

$$
\begin{gathered}
\delta d u+d \delta u=f \quad \text { in } \Omega, \\
\left\{\begin{array} { r l } 
{ \nu \wedge u = 0 } & { \text { on } \partial \Omega , } \\
{ \nu \wedge \delta u = 0 } & { \text { on } \partial \Omega , }
\end{array} \text { or } \quad \left\{\begin{array}{rl}
\nu\lrcorner u=0 & \text { on } \partial \Omega, \\
\nu\lrcorner d u=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

## Poisson problem for the Hodge Laplacian

Hodge Laplcian

$$
\begin{gathered}
\delta d u+d \delta u=f \quad \text { in } \Omega, \\
\left\{\begin{array} { r l } 
{ \nu \wedge u = 0 } & { \text { on } \partial \Omega , } \\
{ \nu \wedge \delta u = 0 } & { \text { on } \partial \Omega , }
\end{array} \text { or } \quad \left\{\begin{array}{rl}
\nu\lrcorner u=0 & \text { on } \partial \Omega, \\
\nu\lrcorner d u=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

- $k=0$


## Poisson problem for the Hodge Laplacian

Hodge Laplcian

$$
\begin{gathered}
\delta d u+d \delta u=f \quad \text { in } \Omega, \\
\left\{\begin{array} { r l } 
{ \nu \wedge u = 0 } & { \text { on } \partial \Omega , } \\
{ \nu \wedge \delta u = 0 } & { \text { on } \partial \Omega , }
\end{array} \text { or } \quad \left\{\begin{array}{rl}
\nu\lrcorner u=0 & \text { on } \partial \Omega, \\
\nu\lrcorner d u=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

- $k=0$

$$
\Delta u=f \quad \text { in } \Omega,
$$

## Poisson problem for the Hodge Laplacian

Hodge Laplcian

$$
\begin{gathered}
\delta d u+d \delta u=f \quad \text { in } \Omega, \\
\left\{\begin{array} { r l } 
{ \nu \wedge u = 0 } & { \text { on } \partial \Omega , } \\
{ \nu \wedge \delta u = 0 } & { \text { on } \partial \Omega , }
\end{array} \text { or } \quad \left\{\begin{array}{rl}
\nu\lrcorner u=0 & \text { on } \partial \Omega, \\
\nu\lrcorner d u=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

- $k=0$

$$
\Delta u=f \quad \text { in } \Omega,
$$

with either $u=0$

## Poisson problem for the Hodge Laplacian

Hodge Laplcian

$$
\begin{gathered}
\delta d u+d \delta u=f \quad \text { in } \Omega, \\
\left\{\begin{array} { r l } 
{ \nu \wedge u = 0 } & { \text { on } \partial \Omega , } \\
{ \nu \wedge \delta u = 0 } & { \text { on } \partial \Omega , }
\end{array} \text { or } \quad \left\{\begin{array}{rl}
\nu\lrcorner u=0 & \text { on } \partial \Omega, \\
\nu\lrcorner d u=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

- $k=0$

$$
\Delta u=f \quad \text { in } \Omega,
$$

with either $u=0$ or $\frac{\partial u}{\partial \nu}=0$ on $\partial \Omega$.

## Poisson problem for the Hodge Laplacian

Hodge Laplcian

$$
\begin{gathered}
\delta d u+d \delta u=f \quad \text { in } \Omega, \\
\left\{\begin{array} { r l } 
{ \nu \wedge u = 0 } & { \text { on } \partial \Omega , } \\
{ \nu \wedge \delta u = 0 } & { \text { on } \partial \Omega , }
\end{array} \text { or } \quad \left\{\begin{array}{rl}
\nu\lrcorner u=0 & \text { on } \partial \Omega, \\
\nu\lrcorner d u=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

- $k=0$

$$
\Delta u=f \quad \text { in } \Omega,
$$

with either $u=0$ or $\frac{\partial u}{\partial \nu}=0$ on $\partial \Omega$.

- $k=1$

$$
\text { curl curl } u+\nabla \operatorname{div} u=f \quad \text { in } \Omega,
$$

## Poisson problem for the Hodge Laplacian

## Hodge Laplcian

$$
\begin{gathered}
\delta d u+d \delta u=f \quad \text { in } \Omega, \\
\left\{\begin{array} { r l } 
{ \nu \wedge u = 0 } & { \text { on } \partial \Omega , } \\
{ \nu \wedge \delta u = 0 } & { \text { on } \partial \Omega , }
\end{array} \text { or } \quad \left\{\begin{array}{rl}
\nu\lrcorner u=0 & \text { on } \partial \Omega, \\
\nu\lrcorner d u=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

- $k=0$

$$
\Delta u=f \quad \text { in } \Omega,
$$

with either $u=0$ or $\frac{\partial u}{\partial \nu}=0$ on $\partial \Omega$.

- $k=1$

$$
\begin{gathered}
\text { curl curl } u+\nabla \operatorname{div} u=f \quad \text { in } \Omega, \\
\left\{\begin{array} { r l } 
{ \nu \times u = 0 } & { \text { on } \partial \Omega , } \\
{ \operatorname { d i v } u = 0 } & { \text { on } \partial \Omega , }
\end{array} \text { or } \quad \left\{\begin{array}{rl}
\nu \cdot u=0 & \text { on } \partial \Omega, \\
\nu \cdot \operatorname{curl} u=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

## Proof of regularity for Hodge Laplacian

## Proof of regularity for Hodge Laplacian

Idea

## Proof of regularity for Hodge Laplacian

Idea
Morrey's original proof

$$
\delta d u+d \delta u=f \text { in } \Omega
$$

## Proof of regularity for Hodge Laplacian

Idea
Morrey's original proof

$$
\delta d u+d \delta u=f \text { in } \Omega
$$

implies

## Proof of regularity for Hodge Laplacian

Idea
Morrey's original proof

$$
\delta d u+d \delta u=f \text { in } \Omega
$$

implies

$$
\Delta u_{l}=f_{l} \quad \text { in } \Omega, \text { for every } I .
$$

## Proof of regularity for Hodge Laplacian

Idea
Morrey's original proof

$$
\delta d u+d \delta u=f \text { in } \Omega
$$

implies

$$
\Delta u_{l}=f_{l} \quad \text { in } \Omega, \text { for every } I .
$$

On half-space,

## Proof of regularity for Hodge Laplacian

Idea
Morrey's original proof

$$
\delta d u+d \delta u=f \text { in } \Omega
$$

implies

$$
\Delta u_{l}=f_{l} \quad \text { in } \Omega, \text { for every } I .
$$

On half-space, $\nu \wedge u=0$ and $\nu \wedge \delta u=0$ on $\partial \mathbb{R}_{+}^{n}$

## Proof of regularity for Hodge Laplacian

Idea
Morrey's original proof

$$
\delta d u+d \delta u=f \text { in } \Omega
$$

implies

$$
\Delta u_{l}=f_{l} \quad \text { in } \Omega, \text { for every } I .
$$

On half-space, $\nu \wedge u=0$ and $\nu \wedge \delta u=0$ on $\partial \mathbb{R}_{+}^{n}$ implies

## Proof of regularity for Hodge Laplacian

Idea
Morrey's original proof

$$
\delta d u+d \delta u=f \text { in } \Omega
$$

implies

$$
\Delta u_{l}=f_{l} \quad \text { in } \Omega, \text { for every } I .
$$

On half-space, $\nu \wedge u=0$ and $\nu \wedge \delta u=0$ on $\partial \mathbb{R}_{+}^{n}$ implies

$$
\left\{\begin{aligned}
u_{I}=0 & \text { if } n \notin I, \\
\frac{\partial u_{I}}{\partial \nu}=0 & \text { if } n \in I,
\end{aligned} \text { on } \partial \mathbb{R}_{+}^{n} .\right.
$$

## Proof of regularity for Hodge Laplacian

Idea
Morrey's original proof

$$
\delta d u+d \delta u=f \text { in } \Omega
$$

implies

$$
\Delta u_{l}=f_{l} \quad \text { in } \Omega, \text { for every } I .
$$

On half-space, $\nu \wedge u=0$ and $\nu \wedge \delta u=0$ on $\partial \mathbb{R}_{+}^{n}$ implies

$$
\left\{\begin{aligned}
u_{I}=0 & \text { if } n \notin I, \\
\frac{\partial u_{I}}{\partial \nu}=0 & \text { if } n \in I,
\end{aligned} \text { on } \partial \mathbb{R}_{+}^{n} .\right.
$$

Other proof
Agmon-Douglis-Nirenberg or Lopatinskij-Shapiro condition.

Other known results
In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Other known results
In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

Other known results
In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

$$
\Delta u \equiv \operatorname{div}(\nabla u)=f \quad \longrightarrow \quad \operatorname{div}(A \nabla u)=f
$$

Other known results
In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

$$
\Delta u \equiv \operatorname{div}(\nabla u)=f \quad \longrightarrow \quad \operatorname{div}(A \nabla u)=f
$$

True also for systems with Dirichlet condition ( $u=0$ on $\partial \Omega$ ) and prescribed conormal derivative ( $\nu \cdot A \nabla u=0$ on $\partial \Omega$ ).

Other known results
In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

$$
\Delta u \equiv \operatorname{div}(\nabla u)=f \quad \longrightarrow \quad \operatorname{div}(A \nabla u)=f
$$

True also for systems with Dirichlet condition ( $u=0$ on $\partial \Omega$ ) and prescribed conormal derivative ( $\nu \cdot A \nabla u=0$ on $\partial \Omega$ ).

## Beyond Hodge Laplacian?

Which is the correct generalization of Hodge Laplacian?

Other known results
In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

$$
\Delta u \equiv \operatorname{div}(\nabla u)=f \quad \longrightarrow \quad \operatorname{div}(A \nabla u)=f
$$

True also for systems with Dirichlet condition ( $u=0$ on $\partial \Omega$ ) and prescribed conormal derivative ( $\nu \cdot A \nabla u=0$ on $\partial \Omega$ ).

## Beyond Hodge Laplacian?

Which is the correct generalization of Hodge Laplacian?

## Clue from Maxwell

Time harmonic Maxwell system in differential form notation is

Other known results
In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

$$
\Delta u \equiv \operatorname{div}(\nabla u)=f \quad \longrightarrow \quad \operatorname{div}(A \nabla u)=f
$$

True also for systems with Dirichlet condition ( $u=0$ on $\partial \Omega$ ) and prescribed conormal derivative ( $\nu \cdot A \nabla u=0$ on $\partial \Omega$ ).

## Beyond Hodge Laplacian?

Which is the correct generalization of Hodge Laplacian?

## Clue from Maxwell

Time harmonic Maxwell system in differential form notation is

$$
\left\{\begin{aligned}
\delta(A d u) & =\lambda B u+f & & \text { in } \Omega, \\
\delta(B u) & =g & & \text { in } \Omega,
\end{aligned}\right.
$$

Other known results
In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

$$
\Delta u \equiv \operatorname{div}(\nabla u)=f \quad \longrightarrow \quad \operatorname{div}(A \nabla u)=f
$$

True also for systems with Dirichlet condition ( $u=0$ on $\partial \Omega$ ) and prescribed conormal derivative ( $\nu \cdot A \nabla u=0$ on $\partial \Omega$ ).

## Beyond Hodge Laplacian?

Which is the correct generalization of Hodge Laplacian?

## Clue from Maxwell

Time harmonic Maxwell system in differential form notation is

$$
\left\{\begin{aligned}
\delta(A d u) & =\lambda B u+f & & \text { in } \Omega, \\
\delta(B u) & =g & & \text { in } \Omega,
\end{aligned}\right.
$$

with prescribed tangential or normal part on the boundary.

## Problem

## Problem

General existence and boundary regularity theory for

## Problem

General existence and boundary regularity theory for

$$
\begin{equation*}
\delta(A d \omega)+B^{T} d \delta(B \omega)=\lambda B \omega+f \text { in } \Omega \tag{1}
\end{equation*}
$$

## Problem

General existence and boundary regularity theory for

$$
\begin{gather*}
\delta(A d \omega)+B^{T} d \delta(B \omega)=\lambda B \omega+f \text { in } \Omega,  \tag{1}\\
\left\{\begin{array} { r l } 
{ \nu \wedge \omega = 0 } & { \text { on } \partial \Omega , } \\
{ \nu \wedge \delta ( B \omega ) = 0 } & { \text { on } \partial \Omega , }
\end{array} \text { or } \left\{\begin{array}{rl}
\nu\lrcorner B \omega=0 & \text { on } \partial \Omega, \\
\nu\lrcorner A d \omega=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gather*}
$$

## Problem

General existence and boundary regularity theory for

$$
\begin{gathered}
\delta(A d \omega)+B^{T} d \delta(B \omega)=\lambda B \omega+f \text { in } \Omega, \\
\left\{\begin{array} { r l } 
{ \nu \wedge \omega = 0 } & { \text { on } \partial \Omega , } \\
{ \nu \wedge \delta ( B \omega ) = 0 } & { \text { on } \partial \Omega , }
\end{array} \text { or } \left\{\begin{array}{rl}
\nu\lrcorner B \omega=0 & \text { on } \partial \Omega, \\
\nu\lrcorner A d \omega=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

## Results

## Problem

General existence and boundary regularity theory for

$$
\begin{gathered}
\delta(A d \omega)+B^{T} d \delta(B \omega)=\lambda B \omega+f \text { in } \Omega, \\
\left\{\begin{array} { r l } 
{ \nu \wedge \omega = 0 } & { \text { on } \partial \Omega , } \\
{ \nu \wedge \delta ( B \omega ) = 0 } & { \text { on } \partial \Omega , }
\end{array} \text { or } \left\{\begin{array}{rl}
\nu\lrcorner B \omega=0 & \text { on } \partial \Omega, \\
\nu\lrcorner A d \omega=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

## Results

$1<p<\infty$ and $0<\alpha<1$.

## Problem

General existence and boundary regularity theory for

$$
\begin{gathered}
\delta(A d \omega)+B^{T} d \delta(B \omega)=\lambda B \omega+f \text { in } \Omega, \\
\left\{\begin{array}{r}
\nu \wedge \omega=0 \\
\nu \wedge \delta(B \omega)=0
\end{array} \quad \text { on } \partial \Omega,\right. \\
\nu \partial,
\end{gathered} \quad \text { or } \quad\left\{\begin{aligned}
\nu\lrcorner B \omega=0 & \text { on } \partial \Omega, \\
\nu\lrcorner A d \omega=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

## Results

$1<p<\infty$ and $0<\alpha<1 . \Omega \subset \mathbb{R}^{n}$ is open, bounded and $C^{r+2, \alpha}$.

## Problem

General existence and boundary regularity theory for

$$
\begin{gathered}
\delta(A d \omega)+B^{T} d \delta(B \omega)=\lambda B \omega+f \text { in } \Omega, \\
\left\{\begin{array}{r}
\nu \wedge \omega=0 \\
\text { on } \partial \Omega, \\
\nu \wedge \delta(B \omega)=0
\end{array} \quad \text { on } \partial \Omega,\right.
\end{gathered} \quad\left\{\begin{aligned}
\nu\lrcorner B \omega=0 & \text { on } \partial \Omega, \\
\nu\lrcorner A d \omega=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

## Results

$1<p<\infty$ and $0<\alpha<1 . \Omega \subset \mathbb{R}^{n}$ is open, bounded and $C^{r+2, \alpha}$. $A, B$ uniformly elliptic,

## Problem

General existence and boundary regularity theory for

$$
\begin{gathered}
\delta(A d \omega)+B^{T} d \delta(B \omega)=\lambda B \omega+f \text { in } \Omega, \\
\left\{\begin{array}{r}
\nu \wedge \omega=0 \\
\text { on } \partial \Omega, \\
\nu \wedge \delta(B \omega)=0
\end{array} \quad \text { on } \partial \Omega,\right.
\end{gathered} \quad\left\{\begin{aligned}
\nu\lrcorner B \omega=0 & \text { on } \partial \Omega, \\
\nu\lrcorner A d \omega=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

## Results

$1<p<\infty$ and $0<\alpha<1 . \Omega \subset \mathbb{R}^{n}$ is open, bounded and $C^{r+2, \alpha}$. $A, B$ uniformly elliptic, $\lambda \notin \sigma$ (the spectrum of the operator).

## Problem

General existence and boundary regularity theory for

$$
\begin{gathered}
\delta(A d \omega)+B^{T} d \delta(B \omega)=\lambda B \omega+f \text { in } \Omega, \\
\left\{\begin{array}{r}
\nu \wedge \omega=0 \\
\text { on } \partial \Omega, \\
\nu \wedge \delta(B \omega)=0
\end{array} \quad \text { on } \partial \Omega,\right.
\end{gathered} \quad\left\{\begin{aligned}
\nu\lrcorner B \omega=0 & \text { on } \partial \Omega, \\
\nu\lrcorner A d \omega=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

## Results

$1<p<\infty$ and $0<\alpha<1 . \Omega \subset \mathbb{R}^{n}$ is open, bounded and $C^{r+2, \alpha}$. $A, B$ uniformly elliptic, $\lambda \notin \sigma$ (the spectrum of the operator).

## Theorem

## Problem

General existence and boundary regularity theory for

$$
\begin{gathered}
\delta(A d \omega)+B^{T} d \delta(B \omega)=\lambda B \omega+f \text { in } \Omega, \\
\left\{\begin{array}{r}
\nu \wedge \omega=0 \\
\text { on } \partial \Omega, \\
\nu \wedge \delta(B \omega)=0
\end{array} \quad \text { on } \partial \Omega,\right.
\end{gathered} \quad\left\{\begin{aligned}
\nu\lrcorner B \omega=0 & \text { on } \partial \Omega, \\
\nu\lrcorner A d \omega=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

## Results

$1<p<\infty$ and $0<\alpha<1 . \Omega \subset \mathbb{R}^{n}$ is open, bounded and $C^{r+2, \alpha}$.
$A, B$ uniformly elliptic, $\lambda \notin \sigma$ (the spectrum of the operator).
Theorem
(i) If $A \in C^{1}, B \in C^{2}$, Then

## Problem

General existence and boundary regularity theory for

$$
\begin{gathered}
\delta(A d \omega)+B^{T} d \delta(B \omega)=\lambda B \omega+f \text { in } \Omega, \\
\left\{\begin{array} { r l } 
{ \nu \wedge \omega = 0 } & { \text { on } \partial \Omega , } \\
{ \nu \wedge \delta ( B \omega ) = 0 } & { \text { on } \partial \Omega , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{rl}
\nu\lrcorner B \omega=0 & \text { on } \partial \Omega, \\
\nu\lrcorner A d \omega=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

## Results

$1<p<\infty$ and $0<\alpha<1 . \Omega \subset \mathbb{R}^{n}$ is open, bounded and $C^{r+2, \alpha}$.
$A, B$ uniformly elliptic, $\lambda \notin \sigma$ (the spectrum of the operator).
Theorem
(i) If $A \in C^{1}, B \in C^{2}$, Then

$$
f \in L^{p} \Rightarrow \omega \in W^{2, p} .
$$

## Problem

General existence and boundary regularity theory for

$$
\begin{gathered}
\delta(A d \omega)+B^{T} d \delta(B \omega)=\lambda B \omega+f \text { in } \Omega, \\
\left\{\begin{array} { r l } 
{ \nu \wedge \omega = 0 } & { \text { on } \partial \Omega , } \\
{ \nu \wedge \delta ( B \omega ) = 0 } & { \text { on } \partial \Omega , }
\end{array} \text { or } \left\{\begin{array}{rl}
\nu\lrcorner B \omega=0 & \text { on } \partial \Omega, \\
\nu\lrcorner A d \omega=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

## Results

$1<p<\infty$ and $0<\alpha<1 . \Omega \subset \mathbb{R}^{n}$ is open, bounded and $C^{r+2, \alpha}$.
$A, B$ uniformly elliptic, $\lambda \notin \sigma$ (the spectrum of the operator).
Theorem
(i) If $A \in C^{1}, B \in C^{2}$, Then

$$
f \in L^{p} \Rightarrow \omega \in W^{2, p} .
$$

(ii) $A \in C^{1, \alpha}, B \in C^{2, \alpha}$, Then

## Problem

General existence and boundary regularity theory for

$$
\begin{gathered}
\delta(A d \omega)+B^{T} d \delta(B \omega)=\lambda B \omega+f \text { in } \Omega, \\
\left\{\begin{array} { r l } 
{ \nu \wedge \omega = 0 } & { \text { on } \partial \Omega , } \\
{ \nu \wedge \delta ( B \omega ) = 0 } & { \text { on } \partial \Omega , }
\end{array} \text { or } \left\{\begin{array}{rl}
\nu\lrcorner B \omega=0 & \text { on } \partial \Omega, \\
\nu\lrcorner A d \omega=0 & \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

## Results

$1<p<\infty$ and $0<\alpha<1 . \Omega \subset \mathbb{R}^{n}$ is open, bounded and $C^{r+2, \alpha}$. $A, B$ uniformly elliptic, $\lambda \notin \sigma$ (the spectrum of the operator).

## Theorem

(i) If $A \in C^{1}, B \in C^{2}$, Then

$$
f \in L^{p} \Rightarrow \omega \in W^{2, p}
$$

(ii) $A \in C^{1, \alpha}, B \in C^{2, \alpha}$, Then

$$
f \in C^{0, \alpha} \Rightarrow \omega \in C^{2, \alpha} .
$$

## Corollaries

## Corollaries

## Maxwell system

## Corollaries

## Maxwell system

$$
\left\{\begin{aligned}
\delta(A d u) & =\lambda B u+f & & \text { in } \Omega, \\
\delta(B u) & =g & & \text { in } \Omega,
\end{aligned}\right.
$$

## Corollaries

## Maxwell system

$$
\begin{gathered}
\left\{\begin{array}{cl}
\delta(A d u)=\lambda B u+f & \text { in } \Omega, \\
\delta(B u)=g & \\
\text { in } \Omega,
\end{array}\right. \\
\left\{\begin{array}{c}
\nu \wedge u=0 \text { on } \partial \Omega, \\
\nu \wedge \delta(B u)=0 \text { on } \partial \Omega,
\end{array} \quad \text { and } \quad \begin{array}{c}
\nu\lrcorner B u=0 \text { on } \partial \Omega, \\
\nu\lrcorner(A d u)=0 \text { on } \partial \Omega .
\end{array}\right.
\end{gathered}
$$

## Corollaries

## Maxwell system

$$
\begin{gathered}
\left\{\begin{array}{cl}
\delta(A d u)=\lambda B u+f & \text { in } \Omega, \\
\delta(B u)=g & \\
\text { in } \Omega,
\end{array}\right. \\
\left\{\begin{array}{c}
\nu \wedge u=0 \text { on } \partial \Omega, \\
\nu \wedge \delta(B u)=0 \text { on } \partial \Omega,
\end{array} \quad \text { and } \quad \begin{array}{c}
\nu\lrcorner B u=0 \text { on } \partial \Omega, \\
\nu\lrcorner(A d u)=0 \text { on } \partial \Omega .
\end{array}\right.
\end{gathered}
$$

## Stationary Stokes system

## Corollaries

## Maxwell system

$$
\begin{gathered}
\left\{\begin{array}{cl}
\delta(A d u)=\lambda B u+f & \text { in } \Omega, \\
\delta(B u)=g & \\
\text { in } \Omega,
\end{array}\right. \\
\left\{\begin{array}{c}
\nu \wedge u=0 \text { on } \partial \Omega, \\
\nu \wedge \delta(B u)=0 \text { on } \partial \Omega,
\end{array} \quad \text { and } \quad \begin{array}{c}
\nu\lrcorner B u=0 \text { on } \partial \Omega, \\
\nu\lrcorner(A d u)=0 \text { on } \partial \Omega .
\end{array}\right.
\end{gathered}
$$

## Stationary Stokes system

$$
\left\{\begin{array}{c}
\delta(A d u)+d p=f \text { in } \Omega, \\
\delta u=0 \text { in } \Omega,
\end{array}\right.
$$

## Corollaries

## Maxwell system

$$
\begin{gathered}
\left\{\begin{array}{cl}
\delta(A d u)=\lambda B u+f & \text { in } \Omega, \\
\delta(B u)=g & \text { in } \Omega,
\end{array}\right. \\
\left\{\begin{array}{c}
\nu \wedge u=0 \text { on } \partial \Omega, \\
\nu \wedge \delta(B u)=0 \text { on } \partial \Omega,
\end{array} \quad \text { and } \quad \begin{array}{c}
\nu\lrcorner B u=0 \text { on } \partial \Omega, \\
\nu\lrcorner(A d u)=0 \text { on } \partial \Omega .
\end{array}\right.
\end{gathered}
$$

## Stationary Stokes system

$$
\begin{gathered}
\left\{\begin{array}{r}
\delta(A d u)+d p=f \text { in } \Omega, \\
\delta u=0 \text { in } \Omega,
\end{array}\right. \\
\left\{\begin{array} { c } 
{ \nu \wedge u = 0 \text { on } \partial \Omega , } \\
{ p = p _ { 0 } \text { on } \partial \Omega , }
\end{array} \text { and } \quad \left\{\begin{array}{c}
\nu\lrcorner u=0 \text { on } \partial \Omega, \\
\nu\lrcorner(A d u)=0 \text { on } \partial \Omega .
\end{array}\right.\right.
\end{gathered}
$$

## Corollaries

## Corollaries

## Generalized div-curl system

## Corollaries

Generalized div-curl system

$$
\left\{\begin{array} { r l r l } 
{ d ( A u ) = f } & { } & { \text { in } \Omega , } \\
{ \delta ( B u ) = g } & { } & { \text { in } \Omega , } \\
{ \nu \wedge A u = \nu \wedge u _ { 0 } } & { } & { \text { on } \partial \Omega , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{lll}
d(A u)=f & & \text { in } \Omega, \\
\delta(B u)=g & & \text { in } \Omega, \\
\nu\lrcorner B u=\nu\lrcorner u_{0} & & \text { on } \partial \Omega .
\end{array}\right.\right.
$$

## Corollaries

Generalized div-curl system

$$
\left\{\begin{array} { r l r l } 
{ d ( A u ) = f } & { } & { \text { in } \Omega , } \\
{ \delta ( B u ) = g } & { } & { \text { in } \Omega , } \\
{ \nu \wedge A u = \nu \wedge u _ { 0 } } & { } & { \text { on } \partial \Omega , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{rlrl}
d(A u)=f & & \text { in } \Omega, \\
\delta(B u)=g & & \text { in } \Omega, \\
\nu\lrcorner B u=\nu\lrcorner u_{0} & & \text { on } \partial \Omega .
\end{array}\right.\right.
$$

Non-elliptic Dirichlet problem

## Corollaries

Generalized div-curl system

$$
\left\{\begin{array} { r l r l } 
{ d ( A u ) = f } & { } & { \text { in } \Omega , } \\
{ \delta ( B u ) = g } & { } & { \text { in } \Omega , } \\
{ \nu \wedge A u = \nu \wedge u _ { 0 } } & { } & { \text { on } \partial \Omega , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{rlrl}
d(A u)=f & & \text { in } \Omega, \\
\delta(B u)=g & & \text { in } \Omega, \\
\nu\lrcorner B u=\nu\lrcorner u_{0} & & \text { on } \partial \Omega .
\end{array}\right.\right.
$$

Non-elliptic Dirichlet problem

$$
\left\{\begin{array}{c}
\delta(A d u)=f \text { in } \Omega, \\
u=u_{0} \text { on } \partial \Omega,
\end{array}\right.
$$

## The Gaffney inequality

## The Gaffney inequality

The classical Gaffney inequality reads,

## The Gaffney inequality

The classical Gaffney inequality reads,

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\|d \omega\|_{L^{2}}^{2}+\|\delta \omega\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} \cap W_{N}^{1,2} .
$$

## The Gaffney inequality

The classical Gaffney inequality reads,

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\|d \omega\|_{L^{2}}^{2}+\|\delta \omega\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} \cap W_{N}^{1,2} .
$$

## The Gaffney inequality

The classical Gaffney inequality reads,

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\|d \omega\|_{L^{2}}^{2}+\|\delta \omega\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} \cap W_{N}^{1,2} .
$$

- Gives existence in $W^{1,2}$ for the Hodge Laplacian.


## The Gaffney inequality

The classical Gaffney inequality reads,

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\|d \omega\|_{L^{2}}^{2}+\|\delta \omega\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} \cap W_{N}^{1,2} .
$$

- Gives existence in $W^{1,2}$ for the Hodge Laplacian.
- Can be proved by an integration by parts formula.


## The Gaffney inequality

The classical Gaffney inequality reads,

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\|d \omega\|_{L^{2}}^{2}+\|\delta \omega\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} \cap W_{N}^{1,2} .
$$

- Gives existence in $W^{1,2}$ for the Hodge Laplacian.
- Can be proved by an integration by parts formula.

Combining with uniform ellipticity of $A$ gives,

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\int_{\Omega}\langle A d \omega, d \omega\rangle+\|\delta \omega\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} \cap W_{N}^{1,2} .
$$

## The Gaffney inequality

The classical Gaffney inequality reads,

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\|d \omega\|_{L^{2}}^{2}+\|\delta \omega\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} \cap W_{N}^{1,2} .
$$

- Gives existence in $W^{1,2}$ for the Hodge Laplacian.
- Can be proved by an integration by parts formula.

Combining with uniform ellipticity of $A$ gives,

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\int_{\Omega}\langle A d \omega, d \omega\rangle+\|\delta \omega\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} \cap W_{N}^{1,2} .
$$

Gives existence when $B$ is identity.

For the general case, we need

For the general case, we need

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\int_{\Omega}\langle A d \omega, d \omega\rangle+\|\delta(B \omega)\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} .
$$

For the general case, we need

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\int_{\Omega}\langle A d \omega, d \omega\rangle+\|\delta(B \omega)\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} .
$$

## Idea

For the general case, we need

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\int_{\Omega}\langle A d \omega, d \omega\rangle+\|\delta(B \omega)\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} .
$$

Idea
Enough to prove

For the general case, we need

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\int_{\Omega}\langle A d \omega, d \omega\rangle+\|\delta(B \omega)\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} .
$$

Idea
Enough to prove

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\|d \omega\|_{L^{2}}^{2}+\|\delta(B \omega)\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} .
$$

For the general case, we need

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\int_{\Omega}\langle A d \omega, d \omega\rangle+\|\delta(B \omega)\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} .
$$

## Idea

Enough to prove

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\|d \omega\|_{L^{2}}^{2}+\|\delta(B \omega)\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} \text {. }
$$

But this is a regularity statement for the system

For the general case, we need

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\int_{\Omega}\langle A d \omega, d \omega\rangle+\|\delta(B \omega)\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} .
$$

## Idea

Enough to prove

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\|d \omega\|_{L^{2}}^{2}+\|\delta(B \omega)\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} .
$$

But this is a regularity statement for the system

$$
\left\{\begin{array}{rlrl}
d \omega=f & & \text { in } \Omega, \\
\delta(B \omega)=g & & \text { in } \Omega, \\
\nu \wedge \omega & =0 & & \text { on } \partial \Omega
\end{array}\right.
$$

For the general case, we need

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\int_{\Omega}\langle A d \omega, d \omega\rangle+\|\delta(B \omega)\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2}
$$

## Idea

Enough to prove

$$
\|\nabla \omega\|_{L^{2}}^{2} \leq c\left(\|d \omega\|_{L^{2}}^{2}+\|\delta(B \omega)\|_{L^{2}}^{2}+\|\omega\|_{L^{2}}^{2}\right), \text { for all } \omega \in W_{T}^{1,2} .
$$

But this is a regularity statement for the system

$$
\left\{\begin{aligned}
& d \omega=f \\
& \text { in } \Omega, \\
& \delta(B \omega)=g \\
& \text { in } \Omega, \\
& \nu \wedge \omega=0 \\
& \text { on } \partial \Omega
\end{aligned}\right.
$$

implied by the regularity results for $\delta(B d u)+d \delta u=F$ with tangential $B C$.

## Strategy

## Strategy

- Start with the classical Gaffney inquality


## Strategy

- Start with the classical Gaffney inquality
- This implies existence for the system

$$
\left\{\begin{aligned}
\delta(A d u)+d \delta u=f & \text { in } \Omega, \\
\nu \wedge u=0 & \text { on } \partial \Omega, \\
\nu \wedge \delta u=0 & \text { on } \partial \Omega,
\end{aligned}\right.
$$

## Strategy

- Start with the classical Gaffney inquality
- This implies existence for the system

$$
\left\{\begin{aligned}
\delta(A d u)+d \delta u=f & \text { in } \Omega \\
\nu \wedge u=0 & \text { on } \partial \Omega \\
\nu \wedge \delta u=0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

- Prove regularity results. This implies the general version of the Gaffney inequality we need.


## Strategy

- Start with the classical Gaffney inquality
- This implies existence for the system

$$
\left\{\begin{aligned}
\delta(A d u)+d \delta u=f & \text { in } \Omega, \\
\nu \wedge u=0 & \text { on } \partial \Omega, \\
\nu \wedge \delta u=0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

- Prove regularity results. This implies the general version of the Gaffney inequality we need.
- Use this to deduce existence and regularity for the general system.


## Strategy

- Start with the classical Gaffney inquality
- This implies existence for the system

$$
\left\{\begin{aligned}
\delta(A d u)+d \delta u=f & \text { in } \Omega, \\
\nu \wedge u=0 & \text { on } \partial \Omega, \\
\nu \wedge \delta u=0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

- Prove regularity results. This implies the general version of the Gaffney inequality we need.
- Use this to deduce existence and regularity for the general system.


## Regularity

## Regularity

- Verification of ADN or LS conditions looks difficult!


## Regularity

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.


## Regularity

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

Campanato spaces

## Regularity

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

Campanato spaces
For $0 \leq \mu \leq n+2$, we say $u \in \mathcal{L}^{2, \mu}(\Omega)$

## Regularity

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

Campanato spaces
For $0 \leq \mu \leq n+2$, we say $u \in \mathcal{L}^{2, \mu}(\Omega)$ if $u \in L^{2}(\Omega)$

## Regularity

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

Campanato spaces
For $0 \leq \mu \leq n+2$, we say $u \in \mathcal{L}^{2, \mu}(\Omega)$ if $u \in L^{2}(\Omega)$ with

$$
\sup _{\substack{x_{0} \in \Omega, 0<\rho<\operatorname{diam}(\Omega)}} \frac{1}{\rho^{\mu}} \int_{B_{\rho}\left(x_{0}\right) \cap \Omega}\left|u-(u)_{\rho, x_{0}}\right|^{2}<\infty .
$$

## Regularity

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

Campanato spaces
For $0 \leq \mu \leq n+2$, we say $u \in \mathcal{L}^{2, \mu}(\Omega)$ if $u \in L^{2}(\Omega)$ with

$$
\sup _{\substack{x_{0} \in \Omega, 0<\rho<\operatorname{diam}(\Omega)}} \frac{1}{\rho^{\mu}} \int_{B_{\rho}\left(x_{0}\right) \cap \Omega}\left|u-(u)_{\rho, x_{0}}\right|^{2}<\infty .
$$

## Properties

## Regularity

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

Campanato spaces
For $0 \leq \mu \leq n+2$, we say $u \in \mathcal{L}^{2, \mu}(\Omega)$ if $u \in L^{2}(\Omega)$ with

$$
\sup _{\substack{x_{0} \in \Omega, 0<\rho<\operatorname{diam}(\Omega)}} \frac{1}{\rho^{\mu}} \int_{B_{\rho}\left(x_{0}\right) \cap \Omega}\left|u-(u)_{\rho, x_{0}}\right|^{2}<\infty .
$$

## Properties

- $\mu=0$ is simply $L^{2}$.


## Regularity

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

Campanato spaces
For $0 \leq \mu \leq n+2$, we say $u \in \mathcal{L}^{2, \mu}(\Omega)$ if $u \in L^{2}(\Omega)$ with

$$
\sup _{\substack{x_{0} \in \Omega, 0<\rho<\operatorname{diam}(\Omega)}} \frac{1}{\rho^{\mu}} \int_{B_{\rho}\left(x_{0}\right) \cap \Omega}\left|u-(u)_{\rho, x_{0}}\right|^{2}<\infty .
$$

## Properties

- $\mu=0$ is simply $L^{2}$.
- $n<\mu \leq n+2$ is the space $C^{0, \frac{\mu-n}{2}}(\bar{\Omega})$.


## Regularity

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

Campanato spaces
For $0 \leq \mu \leq n+2$, we say $u \in \mathcal{L}^{2, \mu}(\Omega)$ if $u \in L^{2}(\Omega)$ with

$$
\sup _{\substack{x_{0} \in \Omega, 0<\rho<\operatorname{diam}(\Omega)}} \frac{1}{\rho^{\mu}} \int_{B_{\rho}\left(x_{0}\right) \cap \Omega}\left|u-(u)_{\rho, x_{0}}\right|^{2}<\infty .
$$

## Properties

- $\mu=0$ is simply $L^{2}$.
- $n<\mu \leq n+2$ is the space $C^{0, \frac{\mu-n}{2}}(\bar{\Omega})$.
- $\mu=n$ is the BMO space.


## Regularity

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

Campanato spaces
For $0 \leq \mu \leq n+2$, we say $u \in \mathcal{L}^{2, \mu}(\Omega)$ if $u \in L^{2}(\Omega)$ with

$$
\sup _{\substack{x_{0} \in \Omega, 0<\rho<\operatorname{diam}(\Omega)}} \frac{1}{\rho^{\mu}} \int_{B_{\rho}\left(x_{0}\right) \cap \Omega}\left|u-(u)_{\rho, x_{0}}\right|^{2}<\infty .
$$

## Properties

- $\mu=0$ is simply $L^{2}$.
- $n<\mu \leq n+2$ is the space $C^{0, \frac{\mu-n}{2}}(\bar{\Omega})$.
- $\mu=n$ is the BMO space.

The scheme

The scheme

- Flatten the boundary and freeze coefficients at a boundary point.

The scheme

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence.

The scheme

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$
\delta(A d \omega)+B^{T} d \delta(B \omega)=\operatorname{div} F \text { in } B_{\rho}^{+} .
$$

The scheme

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$
\delta(A d \omega)+B^{T} d \delta(B \omega)=\operatorname{div} F \text { in } B_{\rho}^{+} .
$$

- Prove $F \in \mathcal{L}^{2, \mu}$ implies $\nabla \omega \in \mathcal{L}^{2, \mu}$ for all $0<\mu<n+2$.

The scheme

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$
\delta(A d \omega)+B^{T} d \delta(B \omega)=\operatorname{div} F \text { in } B_{\rho}^{+} .
$$

- Prove $F \in \mathcal{L}^{2, \mu}$ implies $\nabla \omega \in \mathcal{L}^{2, \mu}$ for all $0<\mu<n+2$.
- For $n<\mu<n+2$, this implies the Schauder estimates for the gradient.

The scheme

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$
\delta(A d \omega)+B^{T} d \delta(B \omega)=\operatorname{div} F \text { in } B_{\rho}^{+} .
$$

- Prove $F \in \mathcal{L}^{2, \mu}$ implies $\nabla \omega \in \mathcal{L}^{2, \mu}$ for all $0<\mu<n+2$.
- For $n<\mu<n+2$, this implies the Schauder estimates for the gradient.
- The estimate for $\mu=n$ and $\mu=0$ implies

The scheme

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$
\delta(A d \omega)+B^{T} d \delta(B \omega)=\operatorname{div} F \text { in } B_{\rho}^{+} .
$$

- Prove $F \in \mathcal{L}^{2, \mu}$ implies $\nabla \omega \in \mathcal{L}^{2, \mu}$ for all $0<\mu<n+2$.
- For $n<\mu<n+2$, this implies the Schauder estimates for the gradient.
- The estimate for $\mu=n$ and $\mu=0$ implies that the map $F \mapsto \nabla \omega$ is a bounded linear operator

The scheme

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$
\delta(A d \omega)+B^{T} d \delta(B \omega)=\operatorname{div} F \text { in } B_{\rho}^{+} .
$$

- Prove $F \in \mathcal{L}^{2, \mu}$ implies $\nabla \omega \in \mathcal{L}^{2, \mu}$ for all $0<\mu<n+2$.
- For $n<\mu<n+2$, this implies the Schauder estimates for the gradient.
- The estimate for $\mu=n$ and $\mu=0$ implies that the map $F \mapsto \nabla \omega$ is a bounded linear operator from $L^{\infty}$ to BMO

The scheme

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$
\delta(A d \omega)+B^{T} d \delta(B \omega)=\operatorname{div} F \text { in } B_{\rho}^{+} .
$$

- Prove $F \in \mathcal{L}^{2, \mu}$ implies $\nabla \omega \in \mathcal{L}^{2, \mu}$ for all $0<\mu<n+2$.
- For $n<\mu<n+2$, this implies the Schauder estimates for the gradient.
- The estimate for $\mu=n$ and $\mu=0$ implies that the map $F \mapsto \nabla \omega$ is a bounded linear operator from $L^{\infty}$ to BMO and $L^{2}$ to $L^{2}$, respectively.

The scheme

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$
\delta(A d \omega)+B^{T} d \delta(B \omega)=\operatorname{div} F \text { in } B_{\rho}^{+}
$$

- Prove $F \in \mathcal{L}^{2, \mu}$ implies $\nabla \omega \in \mathcal{L}^{2, \mu}$ for all $0<\mu<n+2$.
- For $n<\mu<n+2$, this implies the Schauder estimates for the gradient.
- The estimate for $\mu=n$ and $\mu=0$ implies that the map $F \mapsto \nabla \omega$ is a bounded linear operator from $L^{\infty}$ to BMO and $L^{2}$ to $L^{2}$, respectively. Stampaccia interpolation theorem implies that it must also be a bounded linear operator from $L^{p}$ to $L^{p}$ for all $2 \leq p<\infty$.


## The scheme

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$
\delta(A d \omega)+B^{T} d \delta(B \omega)=\operatorname{div} F \text { in } B_{\rho}^{+}
$$

- Prove $F \in \mathcal{L}^{2, \mu}$ implies $\nabla \omega \in \mathcal{L}^{2, \mu}$ for all $0<\mu<n+2$.
- For $n<\mu<n+2$, this implies the Schauder estimates for the gradient.
- The estimate for $\mu=n$ and $\mu=0$ implies that the map $F \mapsto \nabla \omega$ is a bounded linear operator from $L^{\infty}$ to BMO and $L^{2}$ to $L^{2}$, respectively. Stampaccia interpolation theorem implies that it must also be a bounded linear operator from $L^{p}$ to $L^{p}$ for all $2 \leq p<\infty$. A fixed point argument yields $L^{p}$ estimates for the gradient for $2 \leq p<\infty$.


## The scheme

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$
\delta(A d \omega)+B^{T} d \delta(B \omega)=\operatorname{div} F \text { in } B_{\rho}^{+}
$$

- Prove $F \in \mathcal{L}^{2, \mu}$ implies $\nabla \omega \in \mathcal{L}^{2, \mu}$ for all $0<\mu<n+2$.
- For $n<\mu<n+2$, this implies the Schauder estimates for the gradient.
- The estimate for $\mu=n$ and $\mu=0$ implies that the map $F \mapsto \nabla \omega$ is a bounded linear operator from $L^{\infty}$ to BMO and $L^{2}$ to $L^{2}$, respectively. Stampaccia interpolation theorem implies that it must also be a bounded linear operator from $L^{p}$ to $L^{p}$ for all $2 \leq p<\infty$. A fixed point argument yields $L^{p}$ estimates for the gradient for $2 \leq p<\infty$. A duality argument proves the same for $1<p<2$.


## The scheme

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$
\delta(A d \omega)+B^{T} d \delta(B \omega)=\operatorname{div} F \text { in } B_{\rho}^{+}
$$

- Prove $F \in \mathcal{L}^{2, \mu}$ implies $\nabla \omega \in \mathcal{L}^{2, \mu}$ for all $0<\mu<n+2$.
- For $n<\mu<n+2$, this implies the Schauder estimates for the gradient.
- The estimate for $\mu=n$ and $\mu=0$ implies that the map $F \mapsto \nabla \omega$ is a bounded linear operator from $L^{\infty}$ to BMO and $L^{2}$ to $L^{2}$, respectively. Stampaccia interpolation theorem implies that it must also be a bounded linear operator from $L^{p}$ to $L^{p}$ for all $2 \leq p<\infty$. A fixed point argument yields $L^{p}$ estimates for the gradient for $2 \leq p<\infty$. A duality argument proves the same for $1<p<2$.
- Estimates for the Hessian follows from this by iterating.


## The scheme

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$
\delta(A d \omega)+B^{T} d \delta(B \omega)=\operatorname{div} F \text { in } B_{\rho}^{+}
$$

- Prove $F \in \mathcal{L}^{2, \mu}$ implies $\nabla \omega \in \mathcal{L}^{2, \mu}$ for all $0<\mu<n+2$.
- For $n<\mu<n+2$, this implies the Schauder estimates for the gradient.
- The estimate for $\mu=n$ and $\mu=0$ implies that the map $F \mapsto \nabla \omega$ is a bounded linear operator from $L^{\infty}$ to BMO and $L^{2}$ to $L^{2}$, respectively. Stampaccia interpolation theorem implies that it must also be a bounded linear operator from $L^{p}$ to $L^{p}$ for all $2 \leq p<\infty$. A fixed point argument yields $L^{p}$ estimates for the gradient for $2 \leq p<\infty$. A duality argument proves the same for $1<p<2$.
- Estimates for the Hessian follows from this by iterating.
- The scheme is classical by now and is known to work for Dirichlet problem and conormal derivative problem for systems.
- The scheme is classical by now and is known to work for Dirichlet problem and conormal derivative problem for systems.
- Adoption of the scheme to this type of boundary conditions is new.
- The scheme is classical by now and is known to work for Dirichlet problem and conormal derivative problem for systems.
- Adoption of the scheme to this type of boundary conditions is new.
- Requires modifications to carry out the scheme in the context of $W_{T}^{1,2}$ or $W_{N}^{1,2}$ spaces.
- The scheme is classical by now and is known to work for Dirichlet problem and conormal derivative problem for systems.
- Adoption of the scheme to this type of boundary conditions is new.
- Requires modifications to carry out the scheme in the context of $W_{T}^{1,2}$ or $W_{N}^{1,2}$ spaces.
- This method yields a new proof even in the case of the Hodge Laplacian.
- The scheme is classical by now and is known to work for Dirichlet problem and conormal derivative problem for systems.
- Adoption of the scheme to this type of boundary conditions is new.
- Requires modifications to carry out the scheme in the context of $W_{T}^{1,2}$ or $W_{N}^{1,2}$ spaces.
- This method yields a new proof even in the case of the Hodge Laplacian.
- The scheme is classical by now and is known to work for Dirichlet problem and conormal derivative problem for systems.
- Adoption of the scheme to this type of boundary conditions is new.
- Requires modifications to carry out the scheme in the context of $W_{T}^{1,2}$ or $W_{N}^{1,2}$ spaces.
- This method yields a new proof even in the case of the Hodge Laplacian.


## Thank you

