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Motivation Problem and results Existence and the Gaffney inequality Regularity The End

Maxwell’s equations in time-harmonic form

Time harmonic Maxwell’s equations in three dimensions


curlH = iωεE + Je in Ω,

curlE = −iωµH + Jm in Ω,

ν × E = ν × E0 on ∂Ω.

E ,H - unknown; E0, Je , Jm - given vector fields; ε, µ - 3× 3 matrix fields.

Eliminating H and writting as a system in E , we obtain,
curl(µ−1 curlE ) = ω2εE − iωJe + curl

(
µ−1Jm

)
in Ω,

div(εE ) =
i

ω
div Je in Ω,

ν × E = ν × E0 on ∂Ω.

H satisfies similar system with prescribed normal part on the boundary.
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Poisson problem for the Hodge Laplacian

Hodge Laplcian

δdu + dδu = f in Ω,{
ν ∧ u = 0 on ∂Ω,

ν ∧ δu = 0 on ∂Ω,
or

{
νyu = 0 on ∂Ω,

νydu = 0 on ∂Ω.

• k = 0
∆u = f in Ω,

with either u = 0 or ∂u
∂ν = 0 on ∂Ω.

• k = 1
curl curl u +∇ div u = f in Ω,

{
ν × u = 0 on ∂Ω,

div u = 0 on ∂Ω,
or

{
ν · u = 0 on ∂Ω,

ν · curl u = 0 on ∂Ω.
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Proof of regularity for Hodge Laplacian

Idea
Morrey’s original proof

δdu + dδu = f in Ω

implies
∆uI = fI in Ω, for every I .

On half-space, ν ∧ u = 0 and ν ∧ δu = 0 on ∂Rn
+ implies

uI = 0 if n /∈ I ,

∂uI
∂ν

= 0 if n ∈ I ,
on ∂Rn

+.

Other proof

Agmon-Douglis-Nirenberg or Lopatinskij-Shapiro condition.
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Other known results
In dimension 3, time harmonic Maxwell system, regularity results are
known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

∆u ≡ div (∇u) = f −→ div (A∇u) = f .

True also for systems with Dirichlet condition ( u = 0 on ∂Ω) and
prescribed conormal derivative (ν · A∇u = 0 on ∂Ω).

Beyond Hodge Laplacian?

Which is the correct generalization of Hodge Laplacian?

Clue from Maxwell
Time harmonic Maxwell system in differential form notation is{

δ(Adu) = λBu + f in Ω,

δ (Bu) = g in Ω,

with prescribed tangential or normal part on the boundary.
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Problem
General existence and boundary regularity theory for

δ(Adω) + BTdδ (Bω) = λBω + f in Ω, (1)

{
ν ∧ ω = 0 on ∂Ω,

ν ∧ δ (Bω) = 0 on ∂Ω,
or

{
νyBω = 0 on ∂Ω,

νyAdω = 0 on ∂Ω.

Results
1 < p <∞ and 0 < α < 1. Ω ⊂ Rn is open, bounded and C r+2,α.
A,B uniformly elliptic, λ /∈ σ(the spectrum of the operator).

Theorem
(i) If A ∈ C 1,B ∈ C 2, Then

f ∈ Lp ⇒ ω ∈W 2,p.

(ii) A ∈ C 1,α,B ∈ C 2,α, Then

f ∈ C 0,α ⇒ ω ∈ C 2,α.

.
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Corollaries

Maxwell system {
δ(Adu) = λBu + f in Ω,

δ (Bu) = g in Ω,{
ν ∧ u = 0 on ∂Ω,

ν ∧ δ (Bu) = 0 on ∂Ω,
and

νyBu = 0 on ∂Ω,

νy (Adu) = 0 on ∂Ω.

Stationary Stokes system{
δ(Adu) + dp = f in Ω,

δu = 0 in Ω,{
ν ∧ u = 0 on ∂Ω,

p = p0 on ∂Ω,
and

{
νyu = 0 on ∂Ω,

νy(Adu) = 0 on ∂Ω.
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The Gaffney inequality

The classical Gaffney inequality reads,

‖∇ω‖2
L2 ≤ c

(
‖dω‖2

L2 + ‖δω‖2
L2 + ‖ω‖2

L2

)
, for all ω ∈W 1,2

T ∩W 1,2
N .

• Gives existence in W 1,2 for the Hodge Laplacian.

• Can be proved by an integration by parts formula.

Combining with uniform ellipticity of A gives,

‖∇ω‖2
L2 ≤ c

(∫
Ω

〈Adω, dω〉+ ‖δω‖2
L2 + ‖ω‖2

L2

)
, for all ω ∈W 1,2

T ∩W 1,2
N .

Gives existence when B is identity.
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For the general case, we need

‖∇ω‖2
L2 ≤ c

(∫
Ω

〈Adω, dω〉+ ‖δ (Bω)‖2
L2 + ‖ω‖2

L2

)
, for all ω ∈W 1,2

T .

Idea
Enough to prove

‖∇ω‖2
L2 ≤ c

(
‖dω‖2

L2 + ‖δ (Bω)‖2
L2 + ‖ω‖2

L2

)
, for all ω ∈W 1,2

T .

But this is a regularity statement for the system
dω = f in Ω,

δ(Bω) = g in Ω,

ν ∧ ω = 0 on ∂Ω,

implied by the regularity results for δ(Bdu) + dδu = F with tangential
BC.
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Strategy

• Start with the classical Gaffney inquality

• This implies existence for the system
δ(Adu) + dδu = f in Ω,

ν ∧ u = 0 on ∂Ω,

ν ∧ δu = 0 on ∂Ω,

• Prove regularity results. This implies the general version of the
Gaffney inequality we need.

• Use this to deduce existence and regularity for the general system.



Motivation Problem and results Existence and the Gaffney inequality Regularity The End

Strategy

• Start with the classical Gaffney inquality

• This implies existence for the system
δ(Adu) + dδu = f in Ω,

ν ∧ u = 0 on ∂Ω,

ν ∧ δu = 0 on ∂Ω,

• Prove regularity results. This implies the general version of the
Gaffney inequality we need.

• Use this to deduce existence and regularity for the general system.



Motivation Problem and results Existence and the Gaffney inequality Regularity The End

Strategy

• Start with the classical Gaffney inquality

• This implies existence for the system
δ(Adu) + dδu = f in Ω,

ν ∧ u = 0 on ∂Ω,

ν ∧ δu = 0 on ∂Ω,

• Prove regularity results. This implies the general version of the
Gaffney inequality we need.

• Use this to deduce existence and regularity for the general system.



Motivation Problem and results Existence and the Gaffney inequality Regularity The End

Strategy

• Start with the classical Gaffney inquality

• This implies existence for the system
δ(Adu) + dδu = f in Ω,

ν ∧ u = 0 on ∂Ω,

ν ∧ δu = 0 on ∂Ω,

• Prove regularity results. This implies the general version of the
Gaffney inequality we need.

• Use this to deduce existence and regularity for the general system.



Motivation Problem and results Existence and the Gaffney inequality Regularity The End

Strategy

• Start with the classical Gaffney inquality

• This implies existence for the system
δ(Adu) + dδu = f in Ω,

ν ∧ u = 0 on ∂Ω,

ν ∧ δu = 0 on ∂Ω,

• Prove regularity results. This implies the general version of the
Gaffney inequality we need.

• Use this to deduce existence and regularity for the general system.



Motivation Problem and results Existence and the Gaffney inequality Regularity The End

Strategy

• Start with the classical Gaffney inquality

• This implies existence for the system
δ(Adu) + dδu = f in Ω,

ν ∧ u = 0 on ∂Ω,

ν ∧ δu = 0 on ∂Ω,

• Prove regularity results. This implies the general version of the
Gaffney inequality we need.

• Use this to deduce existence and regularity for the general system.



Motivation Problem and results Existence and the Gaffney inequality Regularity The End

Regularity

• Verification of ADN or LS conditions looks difficult!

• Alternative option: Cacciopoli-Campanato-Stampaccia method.

Campanato spaces

For 0 ≤ µ ≤ n + 2, we say u ∈ L2,µ (Ω) if u ∈ L2 (Ω) with

sup
x0∈Ω,

0<ρ<diam(Ω)

1

ρµ

∫
Bρ(x0)∩Ω

∣∣∣u − (u)ρ,x0

∣∣∣2 <∞.

Properties

• µ = 0 is simply L2.

• n < µ ≤ n + 2 is the space C 0,µ−n
2

(
Ω
)
.

• µ = n is the BMO space.
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The scheme

• Flatten the boundary and freeze coefficients at a boundary point.

• Write the system with the RHS as a divergence. Precisely,

δ(Adω) + BTdδ (Bω) = div F in B+
ρ .

• Prove F ∈ L2,µ implies ∇ω ∈ L2,µ for all 0 < µ < n + 2.

• For n < µ < n + 2, this implies the Schauder estimates for the
gradient.

• The estimate for µ = n and µ = 0 implies that the map F 7→ ∇ω is
a bounded linear operator from L∞ to BMO and L2 to L2,
respectively. Stampaccia interpolation theorem implies that it must
also be a bounded linear operator from Lp to Lp for all 2 ≤ p <∞.
A fixed point argument yields Lp estimates for the gradient for
2 ≤ p <∞. A duality argument proves the same for 1 < p < 2.

• Estimates for the Hessian follows from this by iterating.
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• The scheme is classical by now and is known to work for Dirichlet
problem and conormal derivative problem for systems.

• Adoption of the scheme to this type of boundary conditions is new.

• Requires modifications to carry out the scheme in the context of
W 1,2

T or W 1,2
N spaces.

• This method yields a new proof even in the case of the Hodge
Laplacian.
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Thank you
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