lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Regularity for systems with prescribed tangential or normal part

Swarnendu Sil

École Polytechnique Fédérale de Lausanne Lausanne, Switzerland

19th August, 2017

TIFR-CAM Bangalore, India

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
●000	000	000	000	0

Time harmonic Maxwell's equations in three dimensions

$$\begin{cases} \operatorname{curl} H = i\omega\varepsilon E + J_e & \text{in } \Omega, \\ \operatorname{curl} E = -i\omega\mu H + J_m & \text{in } \Omega, \\ \nu \times E = \nu \times E_0 & \text{on } \partial\Omega. \end{cases}$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
●000	000	000	000	0

Time harmonic Maxwell's equations in three dimensions

$$\begin{cases} \operatorname{curl} H = i\omega\varepsilon E + J_e & \text{in } \Omega, \\ \operatorname{curl} E = -i\omega\mu H + J_m & \text{in } \Omega, \\ \nu \times E = \nu \times E_0 & \text{on } \partial\Omega. \end{cases}$$

E, H - unknown;

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
●000	000	000	000	0

Time harmonic Maxwell's equations in three dimensions

$$\begin{cases} \operatorname{curl} H = i\omega\varepsilon E + J_e & \text{in } \Omega, \\ \operatorname{curl} E = -i\omega\mu H + J_m & \text{in } \Omega, \\ \nu \times E = \nu \times E_0 & \text{on } \partial\Omega. \end{cases}$$

E, H - unknown; E_0, J_e, J_m - given vector fields;

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
●000	000	000	000	0

Time harmonic Maxwell's equations in three dimensions

$$\begin{cases} \operatorname{curl} H = i\omega\varepsilon E + J_e & \text{in } \Omega, \\ \operatorname{curl} E = -i\omega\mu H + J_m & \text{in } \Omega, \\ \nu \times E = \nu \times E_0 & \text{on } \partial\Omega. \end{cases}$$

E, *H* - unknown; E_0, J_e, J_m - given vector fields; ε, μ - 3 × 3 matrix fields.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
●000	000	000	000	0

Time harmonic Maxwell's equations in three dimensions

$$\begin{cases} \operatorname{curl} H = i\omega\varepsilon E + J_e & \text{in } \Omega, \\ \operatorname{curl} E = -i\omega\mu H + J_m & \text{in } \Omega, \\ \nu \times E = \nu \times E_0 & \text{on } \partial\Omega. \end{cases}$$

E,H - unknown; $\textit{E}_{0},\textit{J}_{e},\textit{J}_{m}$ - given vector fields; $\varepsilon,\,\mu$ - 3 \times 3 matrix fields.

Eliminating H and writting as a system in E, we obtain,

$$\begin{cases} \operatorname{curl}(\mu^{-1}\operatorname{curl} E) = \omega^2 \varepsilon E - i\omega J_e + \operatorname{curl}(\mu^{-1} J_m) & \text{ in } \Omega, \\ \operatorname{div}(\varepsilon E) = \frac{i}{\omega} \operatorname{div} J_e & \text{ in } \Omega, \\ \nu \times E = \nu \times E_0 & \text{ on } \partial\Omega. \end{cases}$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
●000	000	000	000	0

Time harmonic Maxwell's equations in three dimensions

$$\begin{cases} \operatorname{curl} H = i\omega\varepsilon E + J_e & \text{in } \Omega, \\ \operatorname{curl} E = -i\omega\mu H + J_m & \text{in } \Omega, \\ \nu \times E = \nu \times E_0 & \text{on } \partial\Omega. \end{cases}$$

E, *H* - unknown; *E*₀, *J*_e, *J*_m - given vector fields; ε , μ - 3 × 3 matrix fields.

Eliminating H and writting as a system in E, we obtain,

$$\begin{cases} \operatorname{curl}(\mu^{-1}\operatorname{curl} E) = \omega^2 \varepsilon E - i\omega J_e + \operatorname{curl}(\mu^{-1} J_m) & \text{ in } \Omega, \\ \operatorname{div}(\varepsilon E) = \frac{i}{\omega} \operatorname{div} J_e & \text{ in } \Omega, \\ \nu \times E = \nu \times E_0 & \text{ on } \partial\Omega. \end{cases}$$

H satisfies similar system with prescribed normal part on the boundary.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Hodge Laplcian

$$\begin{split} \delta du + d\delta u &= f & \text{ in } \Omega, \\ \left\{ \begin{array}{ll} \nu \wedge u &= 0 & \text{ on } \partial \Omega, \\ \nu \wedge \delta u &= 0 & \text{ on } \partial \Omega, \end{array} \right. & \text{ or } & \begin{cases} \nu \lrcorner u &= 0 & \text{ on } \partial \Omega, \\ \nu \lrcorner du &= 0 & \text{ on } \partial \Omega. \end{cases} \end{split}$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Hodge Laplcian

$$\delta du + d\delta u = f \quad \text{in } \Omega,$$

$$\begin{cases}
\nu \wedge u = 0 \quad \text{on } \partial\Omega, \\
\nu \wedge \delta u = 0 \quad \text{on } \partial\Omega,
\end{cases} \quad \text{or} \quad \begin{cases}
\nu \lrcorner u = 0 \quad \text{on } \partial\Omega, \\
\nu \lrcorner du = 0 \quad \text{on } \partial\Omega.
\end{cases}$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Hodge Laplcian

$$\delta du + d\delta u = f \quad \text{in } \Omega,$$

$$\begin{cases}
\nu \wedge u = 0 \quad \text{on } \partial \Omega, \\
\nu \wedge \delta u = 0 \quad \text{on } \partial \Omega,
\end{cases} \quad \text{or} \quad \begin{cases}
\nu \lrcorner u = 0 \quad \text{on } \partial \Omega, \\
\nu \lrcorner du = 0 \quad \text{on } \partial \Omega.
\end{cases}$$

$$\Delta u = f$$
 in Ω ,

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Hodge Laplcian

$$\delta du + d\delta u = f \quad \text{in } \Omega,$$

$$\begin{cases}
\nu \wedge u = 0 \quad \text{on } \partial \Omega, \\
\nu \wedge \delta u = 0 \quad \text{on } \partial \Omega,
\end{cases} \quad \text{or} \quad \begin{cases}
\nu \lrcorner u = 0 \quad \text{on } \partial \Omega, \\
\nu \lrcorner du = 0 \quad \text{on } \partial \Omega.
\end{cases}$$

$$\Delta u = f$$
 in Ω ,

with either u = 0

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Hodge Laplcian

$$\delta du + d\delta u = f \quad \text{in } \Omega,$$

$$\begin{cases} \nu \wedge u = 0 \quad \text{on } \partial \Omega, \\ \nu \wedge \delta u = 0 \quad \text{on } \partial \Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \lrcorner u = 0 \quad \text{on } \partial \Omega, \\ \nu \lrcorner du = 0 \quad \text{on } \partial \Omega. \end{cases}$$

$$\Delta u = f$$
 in Ω ,

with either u = 0 or $\frac{\partial u}{\partial \nu} = 0$ on $\partial \Omega$.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Hodge Laplcian

$$\delta du + d\delta u = f \quad \text{in } \Omega,$$

$$\begin{cases}
\nu \wedge u = 0 \quad \text{on } \partial\Omega, \\
\nu \wedge \delta u = 0 \quad \text{on } \partial\Omega,
\end{cases} \quad \text{or} \quad \begin{cases}
\nu \lrcorner u = 0 \quad \text{on } \partial\Omega, \\
\nu \lrcorner du = 0 \quad \text{on } \partial\Omega.
\end{cases}$$

$$\Delta u = f$$
 in Ω ,

with either u = 0 or $\frac{\partial u}{\partial \nu} = 0$ on $\partial \Omega$. • k = 1

$$\operatorname{curl}\operatorname{curl} u + \nabla\operatorname{div} u = f \quad \text{in } \Omega,$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Hodge Laplcian

$$\delta du + d\delta u = f \quad \text{in } \Omega,$$

$$\begin{cases} \nu \wedge u = 0 \quad \text{on } \partial \Omega, \\ \nu \wedge \delta u = 0 \quad \text{on } \partial \Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \lrcorner u = 0 \quad \text{on } \partial \Omega, \\ \nu \lrcorner du = 0 \quad \text{on } \partial \Omega. \end{cases}$$

$$\Delta u = f$$
 in Ω ,

with either u = 0 or $\frac{\partial u}{\partial \nu} = 0$ on $\partial \Omega$. • k = 1

$$\operatorname{curl}\operatorname{curl} u + \nabla\operatorname{div} u = f \qquad \text{in } \Omega,$$

$$\begin{cases} \nu \times u = 0 \quad \text{on } \partial\Omega, \\ \operatorname{div} u = 0 \quad \text{on } \partial\Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \cdot u = 0 \quad \text{on } \partial\Omega, \\ \nu \cdot \operatorname{curl} u = 0 \quad \text{on } \partial\Omega. \end{cases}$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Idea

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Idea Morrey's original proof

 $\delta du + d\delta u = f \text{ in } \Omega$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Idea Morrey's original proof

 $\delta du + d\delta u = f$ in Ω

implies

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Idea

Morrey's original proof

$$\delta du + d\delta u = f \text{ in } \Omega$$

implies

$$\Delta u_I = f_I$$
 in Ω , for every *I*.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Idea

Morrey's original proof

$$\delta du + d\delta u = f \text{ in } \Omega$$

implies

 $\Delta u_I = f_I$ in Ω , for every *I*.

On half-space,

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Idea

Morrey's original proof

$$\delta du + d\delta u = f \text{ in } \Omega$$

implies

 $\Delta u_I = f_I$ in Ω , for every *I*.

On half-space, $\nu \wedge u = 0$ and $\nu \wedge \delta u = 0$ on $\partial \mathbb{R}^n_+$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Idea

Morrey's original proof

$$\delta du + d\delta u = f \text{ in } \Omega$$

implies

 $\Delta u_I = f_I$ in Ω , for every *I*.

On half-space, $\nu \wedge u = 0$ and $\nu \wedge \delta u = 0$ on $\partial \mathbb{R}^n_+$ implies

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Idea

Morrey's original proof

$$\delta du + d\delta u = f \text{ in } \Omega$$

implies

 $\Delta u_I = f_I$ in Ω , for every *I*.

On half-space, $\nu \wedge u = 0$ and $\nu \wedge \delta u = 0$ on $\partial \mathbb{R}^n_+$ implies

$$\begin{cases} u_I = 0 & \text{if } n \notin I, \\ \frac{\partial u_I}{\partial \nu} = 0 & \text{if } n \in I, \end{cases} \text{ on } \partial \mathbb{R}^n_+.$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Idea

Morrey's original proof

$$\delta du + d\delta u = f \text{ in } \Omega$$

implies

 $\Delta u_I = f_I$ in Ω , for every *I*.

On half-space, $\nu \wedge u = 0$ and $\nu \wedge \delta u = 0$ on $\partial \mathbb{R}^n_+$ implies

$$\begin{cases} u_I = 0 & \text{if } n \notin I, \\ \frac{\partial u_I}{\partial \nu} = 0 & \text{if } n \in I, \end{cases} \text{ on } \partial \mathbb{R}^n_+.$$

Other proof

Agmon-Douglis-Nirenberg or Lopatinskij-Shapiro condition.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000●	000	000	000	0

In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

otivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

Mo OC

In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

Mo

In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

$$\Delta u \equiv \operatorname{div}(\nabla u) = f \qquad \longrightarrow \qquad \operatorname{div}(A\nabla u) = f.$$

Notivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

M

In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

$$\Delta u \equiv \operatorname{div}(\nabla u) = f \qquad \longrightarrow \qquad \operatorname{div}(A\nabla u) = f.$$

True also for systems with Dirichlet condition (u = 0 on $\partial \Omega$) and prescribed conormal derivative ($\nu \cdot A \nabla u = 0$ on $\partial \Omega$).

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

M

In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

$$\Delta u \equiv \operatorname{div}(\nabla u) = f \qquad \longrightarrow \qquad \operatorname{div}(A\nabla u) = f.$$

True also for systems with Dirichlet condition (u = 0 on $\partial \Omega$) and prescribed conormal derivative ($\nu \cdot A \nabla u = 0$ on $\partial \Omega$).

Beyond Hodge Laplacian?

Which is the correct generalization of Hodge Laplacian?

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

Mo

In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

$$\Delta u \equiv \operatorname{div}(\nabla u) = f \qquad \longrightarrow \qquad \operatorname{div}(A\nabla u) = f.$$

True also for systems with Dirichlet condition (u = 0 on $\partial \Omega$) and prescribed conormal derivative ($\nu \cdot A \nabla u = 0$ on $\partial \Omega$).

Beyond Hodge Laplacian?

Which is the correct generalization of Hodge Laplacian?

Clue from Maxwell

Time harmonic Maxwell system in differential form notation is

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

Mo

In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

$$\Delta u \equiv \operatorname{div}(\nabla u) = f \qquad \longrightarrow \qquad \operatorname{div}(A\nabla u) = f.$$

True also for systems with Dirichlet condition (u = 0 on $\partial \Omega$) and prescribed conormal derivative ($\nu \cdot A \nabla u = 0$ on $\partial \Omega$).

Beyond Hodge Laplacian?

Which is the correct generalization of Hodge Laplacian?

Clue from Maxwell

Time harmonic Maxwell system in differential form notation is

$$\begin{cases} \delta(Adu) = \lambda Bu + f & \text{ in } \Omega, \\ \delta(Bu) = g & \text{ in } \Omega, \end{cases}$$

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

Mo

In dimension 3, time harmonic Maxwell system, regularity results are known, but ad hoc methods using scalar elliptic regularity.

Elliptic regularity theory

$$\Delta u \equiv \operatorname{div}(\nabla u) = f \qquad \longrightarrow \qquad \operatorname{div}(A\nabla u) = f.$$

True also for systems with Dirichlet condition (u = 0 on $\partial\Omega$) and prescribed conormal derivative ($\nu \cdot A\nabla u = 0$ on $\partial\Omega$).

Beyond Hodge Laplacian?

Which is the correct generalization of Hodge Laplacian?

Clue from Maxwell

Time harmonic Maxwell system in differential form notation is

$$\begin{cases} \delta(Adu) = \lambda Bu + f & \text{ in } \Omega, \\ \delta(Bu) = g & \text{ in } \Omega, \end{cases}$$

with prescribed tangential or normal part on the boundary.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0
Prob	lem			

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

Problem

General existence and boundary regularity theory for

Notivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

General existence and boundary regularity theory for

$$\delta(Ad\omega) + B^{T} d\delta (B\omega) = \lambda B\omega + f \text{ in } \Omega, \qquad (1)$$

Aotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

General existence and boundary regularity theory for

$$\delta(Ad\omega) + B^{T} d\delta (B\omega) = \lambda B\omega + f \text{ in } \Omega, \qquad (1)$$

$$\begin{cases} \nu \wedge \omega = 0 \quad \text{on } \partial\Omega, \\ \nu \wedge \delta(B\omega) = 0 \quad \text{on } \partial\Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \lrcorner B\omega = 0 \quad \text{on } \partial\Omega, \\ \nu \lrcorner Ad\omega = 0 \quad \text{on } \partial\Omega. \end{cases}$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

General existence and boundary regularity theory for

$$\delta(Ad\omega) + B^{T} d\delta (B\omega) = \lambda B\omega + f \text{ in } \Omega, \qquad (1)$$

$$\begin{cases} \nu \wedge \omega = 0 \quad \text{on } \partial\Omega, \\ \nu \wedge \delta \left(B\omega \right) = 0 \quad \text{on } \partial\Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \lrcorner B\omega = 0 \quad \text{on } \partial\Omega, \\ \nu \lrcorner Ad\omega = 0 \quad \text{on } \partial\Omega. \end{cases}$$

Results

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

General existence and boundary regularity theory for

$$\delta(Ad\omega) + B^{T} d\delta(B\omega) = \lambda B\omega + f \text{ in } \Omega, \qquad (1)$$

$$\begin{cases} \nu \wedge \omega = 0 \quad \text{on } \partial \Omega, \\ \nu \wedge \delta \left(B \omega \right) = 0 \quad \text{on } \partial \Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \lrcorner B \omega = 0 \quad \text{on } \partial \Omega, \\ \nu \lrcorner A d \omega = 0 \quad \text{on } \partial \Omega. \end{cases}$$

Results

 $1 < \textit{p} < \infty \text{ and } 0 < \alpha < 1.$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

General existence and boundary regularity theory for

$$\delta(Ad\omega) + B^{T}d\delta(B\omega) = \lambda B\omega + f \text{ in } \Omega, \qquad (1)$$

$$\begin{cases} \nu \wedge \omega = 0 \quad \text{on } \partial\Omega, \\ \nu \wedge \delta \left(B\omega \right) = 0 \quad \text{on } \partial\Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \lrcorner B\omega = 0 \quad \text{on } \partial\Omega, \\ \nu \lrcorner Ad\omega = 0 \quad \text{on } \partial\Omega. \end{cases}$$

Results

 $1 and <math>0 < \alpha < 1$. $\Omega \subset \mathbb{R}^n$ is open, bounded and $C^{r+2,\alpha}$.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

General existence and boundary regularity theory for

$$\delta(Ad\omega) + B^{T} d\delta (B\omega) = \lambda B\omega + f \text{ in } \Omega, \qquad (1)$$

$$\begin{cases} \nu \wedge \omega = 0 \quad \text{on } \partial\Omega, \\ \nu \wedge \delta \left(B\omega \right) = 0 \quad \text{on } \partial\Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \lrcorner B\omega = 0 \quad \text{on } \partial\Omega, \\ \nu \lrcorner Ad\omega = 0 \quad \text{on } \partial\Omega. \end{cases}$$

Results

 $1 and <math>0 < \alpha < 1$. $\Omega \subset \mathbb{R}^n$ is open, bounded and $C^{r+2,\alpha}$. A, B uniformly elliptic,

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

General existence and boundary regularity theory for

$$\delta(Ad\omega) + B^{T} d\delta (B\omega) = \lambda B\omega + f \text{ in } \Omega, \qquad (1)$$

$$\begin{cases} \nu \wedge \omega = 0 \quad \text{on } \partial\Omega, \\ \nu \wedge \delta \left(B\omega \right) = 0 \quad \text{on } \partial\Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \lrcorner B\omega = 0 \quad \text{on } \partial\Omega, \\ \nu \lrcorner Ad\omega = 0 \quad \text{on } \partial\Omega. \end{cases}$$

Results

 $1 and <math>0 < \alpha < 1$. $\Omega \subset \mathbb{R}^n$ is open, bounded and $C^{r+2,\alpha}$. A, B uniformly elliptic, $\lambda \notin \sigma$ (the spectrum of the operator).

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

General existence and boundary regularity theory for

$$\delta(Ad\omega) + B^{T} d\delta (B\omega) = \lambda B\omega + f \text{ in } \Omega, \qquad (1)$$

$$\begin{cases} \nu \wedge \omega = 0 \quad \text{on } \partial\Omega, \\ \nu \wedge \delta \left(B\omega \right) = 0 \quad \text{on } \partial\Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \lrcorner B\omega = 0 \quad \text{on } \partial\Omega, \\ \nu \lrcorner Ad\omega = 0 \quad \text{on } \partial\Omega. \end{cases}$$

Results

 $1 and <math>0 < \alpha < 1$. $\Omega \subset \mathbb{R}^n$ is open, bounded and $C^{r+2,\alpha}$. A, B uniformly elliptic, $\lambda \notin \sigma$ (the spectrum of the operator).

Theorem

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

General existence and boundary regularity theory for

$$\delta(Ad\omega) + B^{T} d\delta (B\omega) = \lambda B\omega + f \text{ in } \Omega, \qquad (1)$$

$$\begin{cases} \nu \wedge \omega = 0 \quad \text{on } \partial \Omega, \\ \nu \wedge \delta \left(B \omega \right) = 0 \quad \text{on } \partial \Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \lrcorner B \omega = 0 \quad \text{on } \partial \Omega, \\ \nu \lrcorner A d \omega = 0 \quad \text{on } \partial \Omega. \end{cases}$$

Results

 $1 and <math>0 < \alpha < 1$. $\Omega \subset \mathbb{R}^n$ is open, bounded and $C^{r+2,\alpha}$. A, B uniformly elliptic, $\lambda \notin \sigma$ (the spectrum of the operator).

Theorem (*i*) If $A \in C^1, B \in C^2$, Then

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

General existence and boundary regularity theory for

$$\delta(Ad\omega) + B^{T} d\delta (B\omega) = \lambda B\omega + f \text{ in } \Omega, \qquad (1)$$

$$\begin{cases} \nu \wedge \omega = 0 \quad \text{on } \partial \Omega, \\ \nu \wedge \delta \left(B \omega \right) = 0 \quad \text{on } \partial \Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \lrcorner B \omega = 0 \quad \text{on } \partial \Omega, \\ \nu \lrcorner A d \omega = 0 \quad \text{on } \partial \Omega. \end{cases}$$

Results

 $1 and <math>0 < \alpha < 1$. $\Omega \subset \mathbb{R}^n$ is open, bounded and $C^{r+2,\alpha}$. A, B uniformly elliptic, $\lambda \notin \sigma$ (the spectrum of the operator).

Theorem (*i*) If $A \in C^1, B \in C^2$, Then

 $f \in L^p \Rightarrow \omega \in W^{2,p}.$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

General existence and boundary regularity theory for

$$\delta(Ad\omega) + B^{T} d\delta (B\omega) = \lambda B\omega + f \text{ in } \Omega, \qquad (1)$$

$$\begin{cases} \nu \wedge \omega = 0 \quad \text{on } \partial \Omega, \\ \nu \wedge \delta \left(B \omega \right) = 0 \quad \text{on } \partial \Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \lrcorner B \omega = 0 \quad \text{on } \partial \Omega, \\ \nu \lrcorner A d \omega = 0 \quad \text{on } \partial \Omega. \end{cases}$$

Results

 $1 and <math>0 < \alpha < 1$. $\Omega \subset \mathbb{R}^n$ is open, bounded and $C^{r+2,\alpha}$. A, B uniformly elliptic, $\lambda \notin \sigma$ (the spectrum of the operator).

Theorem (*i*) If $A \in C^1, B \in C^2$, Then $f \in L^p \Rightarrow \omega \in W^{2,p}$.

(ii) $A \in C^{1,lpha}, B \in C^{2,lpha},$ Then

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	•00	000	000	0

General existence and boundary regularity theory for

$$\delta(Ad\omega) + B^{T} d\delta (B\omega) = \lambda B\omega + f \text{ in } \Omega, \qquad (1)$$

$$\begin{cases} \nu \wedge \omega = 0 \quad \text{on } \partial \Omega, \\ \nu \wedge \delta \left(B \omega \right) = 0 \quad \text{on } \partial \Omega, \end{cases} \quad \text{or} \quad \begin{cases} \nu \lrcorner B \omega = 0 \quad \text{on } \partial \Omega, \\ \nu \lrcorner A d \omega = 0 \quad \text{on } \partial \Omega. \end{cases}$$

Results

 $1 and <math>0 < \alpha < 1$. $\Omega \subset \mathbb{R}^n$ is open, bounded and $C^{r+2,\alpha}$. A, B uniformly elliptic, $\lambda \notin \sigma$ (the spectrum of the operator).

Theorem (i) If $A \in C^1, B \in C^2$, Then $f \in L^p \Rightarrow \omega \in W^{2,p}$. (ii) $A \in C^{1,\alpha}, B \in C^{2,\alpha}$, Then $f \in C^{0,\alpha} \Rightarrow \omega \in C^{2,\alpha}$.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	○●○	000	000	O
		Corollaries		

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Maxwell system

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Maxwell system

$$\begin{cases} \delta(Adu) = \lambda Bu + f & \text{ in } \Omega, \\ \delta(Bu) = g & \text{ in } \Omega, \end{cases}$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Maxwell system

$$\begin{cases} \delta(Adu) = \lambda Bu + f & \text{ in } \Omega, \\ \delta(Bu) = g & \text{ in } \Omega, \end{cases}$$

$$\begin{cases} \nu \wedge u = 0 \text{ on } \partial\Omega, & \nu \lrcorner Bu = 0 \text{ on } \partial\Omega, \\ \nu \wedge \delta(Bu) = 0 \text{ on } \partial\Omega, & \text{and} & \nu \lrcorner (Adu) = 0 \text{ on } \partial\Omega. \end{cases}$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Maxwell system

$$\begin{cases} \delta(Adu) = \lambda Bu + f & \text{ in } \Omega, \\ \delta(Bu) = g & \text{ in } \Omega, \end{cases}$$

$$\begin{cases} \nu \wedge u = 0 \text{ on } \partial\Omega, & \nu \lrcorner Bu = 0 \text{ on } \partial\Omega, \\ \nu \wedge \delta(Bu) = 0 \text{ on } \partial\Omega, & \nu \lrcorner (Adu) = 0 \text{ on } \partial\Omega. \end{cases}$$

Stationary Stokes system

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Maxwell system

$$\begin{cases} \delta(Adu) = \lambda Bu + f & \text{in } \Omega, \\ \delta(Bu) = g & \text{in } \Omega, \end{cases}$$
$$\begin{cases} \nu \wedge u = 0 \text{ on } \partial\Omega, & \nu \lrcorner Bu = 0 \text{ on } \partial\Omega, \\ \nu \wedge \delta(Bu) = 0 \text{ on } \partial\Omega, & \nu \lrcorner (Adu) = 0 \text{ on } \partial\Omega. \end{cases}$$

~

Stationary Stokes system

$$\begin{cases} \delta(Adu) + dp = f \text{ in } \Omega, \\ \delta u = 0 \text{ in } \Omega, \end{cases}$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Maxwell system

$$\begin{cases} \delta(Adu) = \lambda Bu + f & \text{in } \Omega, \\ \delta(Bu) = g & \text{in } \Omega, \end{cases}$$
$$\begin{cases} \nu \wedge u = 0 \text{ on } \partial\Omega, & \nu \lrcorner Bu = 0 \text{ on } \partial\Omega, \\ \nu \wedge \delta(Bu) = 0 \text{ on } \partial\Omega, & \nu \lrcorner (Adu) = 0 \text{ on } \partial\Omega. \end{cases}$$

~

Stationary Stokes system

$$\begin{cases} \delta(Adu) + dp = f \text{ in } \Omega, \\ \delta u = 0 \text{ in } \Omega, \end{cases}$$
$$\begin{cases} \nu \wedge u = 0 \text{ on } \partial \Omega, \\ p = p_0 \text{ on } \partial \Omega, \end{cases} \quad \text{and} \quad \begin{cases} \nu \lrcorner u = 0 \text{ on } \partial \Omega, \\ \nu \lrcorner (Adu) = 0 \text{ on } \partial \Omega. \end{cases}$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	○○●	000	000	O
		Corollaries		

0000	000	000	000	0
Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End

Generalized div-curl system

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Generalized div-curl system

$$\begin{cases} d(Au) = f & \text{in } \Omega, \\ \delta(Bu) = g & \text{in } \Omega, \\ \nu \wedge Au = \nu \wedge u_0 & \text{on } \partial\Omega, \end{cases} \quad \begin{cases} d(Au) = f & \text{in } \Omega, \\ \delta(Bu) = g & \text{in } \Omega, \\ \nu \lrcorner Bu = \nu \lrcorner u_0 & \text{on } \partial\Omega. \end{cases}$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Generalized div-curl system

$$\begin{cases} d(Au) = f & \text{in } \Omega, \\ \delta(Bu) = g & \text{in } \Omega, \\ \nu \wedge Au = \nu \wedge u_0 & \text{on } \partial\Omega, \end{cases} \quad \begin{cases} d(Au) = f & \text{in } \Omega, \\ \delta(Bu) = g & \text{in } \Omega, \\ \nu \lrcorner Bu = \nu \lrcorner u_0 & \text{on } \partial\Omega. \end{cases}$$

Non-elliptic Dirichlet problem

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

Generalized div-curl system

$$\begin{cases} d(Au) = f & \text{in } \Omega, \\ \delta(Bu) = g & \text{in } \Omega, \\ \nu \wedge Au = \nu \wedge u_0 & \text{on } \partial\Omega, \end{cases} \quad \text{and} \quad \begin{cases} d(Au) = f & \text{in } \Omega, \\ \delta(Bu) = g & \text{in } \Omega, \\ \nu \lrcorner Bu = \nu \lrcorner u_0 & \text{on } \partial\Omega. \end{cases}$$

Non-elliptic Dirichlet problem

$$\begin{cases} \delta(Adu) = f \text{ in } \Omega, \\ u = u_0 \text{ on } \partial\Omega, \end{cases}$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	•00	000	0

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	●OO	000	0

The classical Gaffney inequality reads,

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	●OO	000	0

The classical Gaffney inequality reads,

 $\|\nabla \omega\|_{L^2}^2 \le c \left(\|d\omega\|_{L^2}^2 + \|\delta \omega\|_{L^2}^2 + \|\omega\|_{L^2}^2 \right), \text{ for all } \omega \in W_T^{1,2} \cap W_N^{1,2}.$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	●OO	000	0

The classical Gaffney inequality reads,

 $\|\nabla \omega\|_{L^2}^2 \le c \left(\|d\omega\|_{L^2}^2 + \|\delta \omega\|_{L^2}^2 + \|\omega\|_{L^2}^2 \right), \text{ for all } \omega \in W_T^{1,2} \cap W_N^{1,2}.$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	●OO	000	0

The classical Gaffney inequality reads,

$$\|\nabla \omega\|_{L^2}^2 \le c \left(\|d\omega\|_{L^2}^2 + \|\delta \omega\|_{L^2}^2 + \|\omega\|_{L^2}^2\right), \text{ for all } \omega \in \mathcal{W}_T^{1,2} \cap \mathcal{W}_N^{1,2}.$$

• Gives existence in $W^{1,2}$ for the Hodge Laplacian.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	●OO	000	0

The classical Gaffney inequality reads,

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\|d\omega\|_{L^2}^2 + \|\delta \omega\|_{L^2}^2 + \|\omega\|_{L^2}^2\right), \text{ for all } \omega \in \mathcal{W}_T^{1,2} \cap \mathcal{W}_N^{1,2}.$$

- Gives existence in $W^{1,2}$ for the Hodge Laplacian.
- Can be proved by an integration by parts formula.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	●OO	000	0

The classical Gaffney inequality reads,

$$\|\nabla \omega\|_{L^2}^2 \le c \left(\|d\omega\|_{L^2}^2 + \|\delta \omega\|_{L^2}^2 + \|\omega\|_{L^2}^2\right), \text{ for all } \omega \in \mathcal{W}_T^{1,2} \cap \mathcal{W}_N^{1,2}.$$

- Gives existence in $W^{1,2}$ for the Hodge Laplacian.
- Can be proved by an integration by parts formula.

Combining with uniform ellipticity of A gives,

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\int_{\Omega} \langle Ad\omega, d\omega \rangle + \|\delta \omega\|_{L^2}^2 + \|\omega\|_{L^2}^2\right), \text{ for all } \omega \in W_T^{1,2} \cap W_N^{1,2}.$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	●OO	000	0

The classical Gaffney inequality reads,

$$\|\nabla \omega\|_{L^2}^2 \le c \left(\|d\omega\|_{L^2}^2 + \|\delta \omega\|_{L^2}^2 + \|\omega\|_{L^2}^2\right), \text{ for all } \omega \in \mathcal{W}_T^{1,2} \cap \mathcal{W}_N^{1,2}.$$

- Gives existence in $W^{1,2}$ for the Hodge Laplacian.
- Can be proved by an integration by parts formula.

Combining with uniform ellipticity of A gives,

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\int_{\Omega} \langle Ad\omega, d\omega \rangle + \|\delta \omega\|_{L^2}^2 + \|\omega\|_{L^2}^2\right), \text{ for all } \omega \in W_T^{1,2} \cap W_N^{1,2}.$$

Gives existence when B is identity.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

For the general case, we need

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

For the general case, we need

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\int_{\Omega} \langle Ad\omega, d\omega \rangle + \|\delta \left(B\omega\right)\|_{L^2}^2 + \|\omega\|_{L^2}^2 \right), \text{ for all } \omega \in W_T^{1,2}.$$

otivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

For the general case, we need

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\int_{\Omega} \langle Ad\omega, d\omega \rangle + \|\delta \left(B\omega\right)\|_{L^2}^2 + \|\omega\|_{L^2}^2 \right), \text{ for all } \omega \in W_T^{1,2}.$$

Idea

tivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\int_{\Omega} \langle Ad\omega, d\omega \rangle + \|\delta \left(B\omega\right)\|_{L^2}^2 + \|\omega\|_{L^2}^2 \right), \text{ for all } \omega \in W_T^{1,2}.$$

Idea Enough to prove

otivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\int_{\Omega} \langle Ad\omega, d\omega \rangle + \|\delta \left(B\omega\right)\|_{L^2}^2 + \|\omega\|_{L^2}^2 \right), \text{ for all } \omega \in W_T^{1,2}.$$

Idea

Enough to prove

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\|d\omega\|_{L^2}^2 + \|\delta\left(B\omega\right)\|_{L^2}^2 + \|\omega\|_{L^2}^2\right), \text{ for all } \omega \in W_T^{1,2}.$$

otivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\int_{\Omega} \langle Ad\omega, d\omega \rangle + \|\delta \left(B\omega\right)\|_{L^2}^2 + \|\omega\|_{L^2}^2 \right), \text{ for all } \omega \in W_T^{1,2}.$$

Idea

Enough to prove

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\|d\omega\|_{L^2}^2 + \|\delta\left(B\omega\right)\|_{L^2}^2 + \|\omega\|_{L^2}^2\right), \text{ for all } \omega \in W_T^{1,2}.$$

But this is a regularity statement for the system

otivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\int_{\Omega} \langle Ad\omega, d\omega \rangle + \|\delta \left(B\omega\right)\|_{L^2}^2 + \|\omega\|_{L^2}^2 \right), \text{ for all } \omega \in W_T^{1,2}.$$

Idea

Enough to prove

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\|d\omega\|_{L^2}^2 + \|\delta\left(B\omega\right)\|_{L^2}^2 + \|\omega\|_{L^2}^2\right), \text{ for all } \omega \in W_T^{1,2}.$$

But this is a regularity statement for the system

$$\begin{cases} d\omega = f & \text{ in } \Omega, \\ \delta(B\omega) = g & \text{ in } \Omega, \\ \nu \wedge \omega = 0 & \text{ on } \partial\Omega, \end{cases}$$

otivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\int_{\Omega} \langle Ad\omega, d\omega \rangle + \|\delta \left(B\omega\right)\|_{L^2}^2 + \|\omega\|_{L^2}^2 \right), \text{ for all } \omega \in W_T^{1,2}.$$

Idea

Enough to prove

$$\|\nabla \omega\|_{L^2}^2 \leq c \left(\|d\omega\|_{L^2}^2 + \|\delta\left(B\omega\right)\|_{L^2}^2 + \|\omega\|_{L^2}^2\right), \text{ for all } \omega \in W_T^{1,2}.$$

But this is a regularity statement for the system

$$\begin{cases} d\omega = f & \text{ in } \Omega, \\ \delta(B\omega) = g & \text{ in } \Omega, \\ \nu \wedge \omega = 0 & \text{ on } \partial\Omega. \end{cases}$$

implied by the regularity results for $\delta(Bdu) + d\delta u = F$ with tangential BC.

roblem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	0

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

• Start with the classical Gaffney inquality

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Start with the classical Gaffney inquality
- This implies existence for the system

$$\begin{cases} \delta(Adu) + d\delta u = f & \text{ in } \Omega, \\ \nu \wedge u = 0 & \text{ on } \partial\Omega, \\ \nu \wedge \delta u = 0 & \text{ on } \partial\Omega, \end{cases}$$

Motivation		Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Start with the classical Gaffney inquality
- This implies existence for the system

$$\begin{cases} \delta(Adu) + d\delta u = f & \text{ in } \Omega, \\ \nu \wedge u = 0 & \text{ on } \partial\Omega, \\ \nu \wedge \delta u = 0 & \text{ on } \partial\Omega, \end{cases}$$

• Prove regularity results. This implies the general version of the Gaffney inequality we need.

Motivation		Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Start with the classical Gaffney inquality
- This implies existence for the system

$$\begin{cases} \delta(Adu) + d\delta u = f & \text{ in } \Omega, \\ \nu \wedge u = 0 & \text{ on } \partial\Omega, \\ \nu \wedge \delta u = 0 & \text{ on } \partial\Omega, \end{cases}$$

- Prove regularity results. This implies the general version of the Gaffney inequality we need.
- Use this to deduce existence and regularity for the general system.

Motivation		Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Start with the classical Gaffney inquality
- This implies existence for the system

$$\begin{cases} \delta(Adu) + d\delta u = f & \text{ in } \Omega, \\ \nu \wedge u = 0 & \text{ on } \partial\Omega, \\ \nu \wedge \delta u = 0 & \text{ on } \partial\Omega, \end{cases}$$

- Prove regularity results. This implies the general version of the Gaffney inequality we need.
- Use this to deduce existence and regularity for the general system.

Motivation 0000	Problem and results	Existence and the Gaffney inequality 000	Regularity ●00	The End O	
Regularity					

Motivation 0000	Problem and results	Existence and the Gaffney inequality 000	Regularity ●00	The End O
		Regularity		

• Verification of ADN or LS conditions looks difficult!

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000		000	●00	O
		Regularity		

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	●00	O
		Regularity		

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

Motivation 0000	Problem and results	Existence and the Gaffney inequality	Regularity ●00	The End O
		Regularity		

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

For $0 \leq \mu \leq n+2$, we say $u \in \mathcal{L}^{2,\mu}(\Omega)$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	●00	O
		Regularity		

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

For $0 \leq \mu \leq n+2$, we say $u \in \mathcal{L}^{2,\mu}(\Omega)$ if $u \in L^{2}(\Omega)$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End	
0000	000	000	000	0	
Regularity					
		Regularity			

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

For $0 \le \mu \le n+2$, we say $u \in \mathcal{L}^{2,\mu}(\Omega)$ if $u \in L^2(\Omega)$ with

$$\sup_{\substack{x_0 \in \Omega, \\ 0 < \rho < \operatorname{diam}(\Omega)}} \frac{1}{\rho^{\mu}} \int_{B_{\rho}(x_0) \cap \Omega} \left| u - (u)_{\rho, x_0} \right|^2 < \infty.$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End	
0000	000	000	● 00	0	
Regularity					
		riegalancy			

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

For $0 \le \mu \le n+2$, we say $u \in \mathcal{L}^{2,\mu}(\Omega)$ if $u \in L^{2}(\Omega)$ with

$$\sup_{\substack{x_0 \in \Omega, \\ 0 < \rho < \operatorname{diam}(\Omega)}} \frac{1}{\rho^{\mu}} \int_{B_{\rho}(x_0) \cap \Omega} \left| u - (u)_{\rho, x_0} \right|^2 < \infty.$$

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End	
0000	000	000	● 00	0	
Regularity					
		riegalancy			

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

For $0 \le \mu \le n+2$, we say $u \in \mathcal{L}^{2,\mu}(\Omega)$ if $u \in L^{2}(\Omega)$ with

$$\sup_{\substack{x_0 \in \Omega, \\ 0 < \rho < \operatorname{diam}(\Omega)}} \frac{1}{\rho^{\mu}} \int_{B_{\rho}(x_0) \cap \Omega} \left| u - (u)_{\rho, x_0} \right|^2 < \infty.$$

Properties

• $\mu = 0$ is simply L^2 .

Problem and results	Existence and the Gaffney inequality	Regularity	The End			
000	000	•00	0			
Regularity						
			000 000 • 00			

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

For $0 \leq \mu \leq n+2$, we say $u \in \mathcal{L}^{2,\mu}(\Omega)$ if $u \in L^{2}(\Omega)$ with

$$\sup_{\substack{x_0\in\Omega,\\0<\rho<\text{diam}(\Omega)}}\frac{1}{\rho^{\mu}}\int_{B_{\rho}(x_0)\cap\Omega}\left|u-(u)_{\rho,x_0}\right|^2<\infty.$$

- $\mu = 0$ is simply L^2 .
- $n < \mu \le n+2$ is the space $C^{0,rac{\mu-n}{2}}\left(\overline{\Omega}
 ight)$.

Problem and results	Existence and the Gaffney inequality	Regularity	The End			
000	000	•00	0			
Regularity						
			000 000 • 00			

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

For $0 \leq \mu \leq n+2$, we say $u \in \mathcal{L}^{2,\mu}(\Omega)$ if $u \in L^{2}(\Omega)$ with

$$\sup_{\substack{x_0\in\Omega,\\0<\rho<\text{diam}(\Omega)}}\frac{1}{\rho^{\mu}}\int_{B_{\rho}(x_0)\cap\Omega}\left|u-(u)_{\rho,x_0}\right|^2<\infty.$$

- $\mu = 0$ is simply L^2 .
- $n < \mu \le n+2$ is the space $C^{0,rac{\mu-n}{2}}\left(\overline{\Omega}
 ight)$.
- $\mu = n$ is the BMO space.

Problem and results	Existence and the Gaffney inequality	Regularity	The End			
000	000	•00	0			
Regularity						
			000 000 • 00			

- Verification of ADN or LS conditions looks difficult!
- Alternative option: Cacciopoli-Campanato-Stampaccia method.

For $0 \leq \mu \leq n+2$, we say $u \in \mathcal{L}^{2,\mu}(\Omega)$ if $u \in L^{2}(\Omega)$ with

$$\sup_{\substack{x_0\in\Omega,\\0<\rho<\text{diam}(\Omega)}}\frac{1}{\rho^{\mu}}\int_{B_{\rho}(x_0)\cap\Omega}\left|u-(u)_{\rho,x_0}\right|^2<\infty.$$

- $\mu = 0$ is simply L^2 .
- $n < \mu \le n+2$ is the space $C^{0,rac{\mu-n}{2}}\left(\overline{\Omega}
 ight)$.
- $\mu = n$ is the BMO space.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

• Flatten the boundary and freeze coefficients at a boundary point.

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
000	000	000	000	0

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$\delta(Ad\omega) + B^{T}d\delta(B\omega) = \operatorname{div} F \text{ in } B_{\rho}^{+}.$$

• Prove
$$F \in \mathcal{L}^{2,\mu}$$
 implies $\nabla \omega \in \mathcal{L}^{2,\mu}$ for all $0 < \mu < n+2$.

Notivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$\delta(Ad\omega) + B^{T}d\delta(B\omega) = \operatorname{div} F \text{ in } B_{\rho}^{+}.$$

- Prove $F \in \mathcal{L}^{2,\mu}$ implies $\nabla \omega \in \mathcal{L}^{2,\mu}$ for all $0 < \mu < n+2$.
- For *n* < *µ* < *n* + 2, this implies the Schauder estimates for the gradient.

Notivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

$$\delta(Ad\omega) + B^{T}d\delta(B\omega) = \operatorname{div} F \text{ in } B_{\rho}^{+}.$$

- Prove $F \in \mathcal{L}^{2,\mu}$ implies $\nabla \omega \in \mathcal{L}^{2,\mu}$ for all $0 < \mu < n+2$.
- For *n* < *µ* < *n* + 2, this implies the Schauder estimates for the gradient.
- The estimate for $\mu = n$ and $\mu = 0$ implies

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

- Prove $F \in \mathcal{L}^{2,\mu}$ implies $\nabla \omega \in \mathcal{L}^{2,\mu}$ for all $0 < \mu < n+2$.
- For *n* < *µ* < *n* + 2, this implies the Schauder estimates for the gradient.
- The estimate for $\mu = n$ and $\mu = 0$ implies that the map $F \mapsto \nabla \omega$ is a bounded linear operator

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

- Prove $F \in \mathcal{L}^{2,\mu}$ implies $\nabla \omega \in \mathcal{L}^{2,\mu}$ for all $0 < \mu < n+2$.
- For *n* < *µ* < *n* + 2, this implies the Schauder estimates for the gradient.
- The estimate for $\mu = n$ and $\mu = 0$ implies that the map $F \mapsto \nabla \omega$ is a bounded linear operator from L^{∞} to BMO

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

- Prove $F \in \mathcal{L}^{2,\mu}$ implies $\nabla \omega \in \mathcal{L}^{2,\mu}$ for all $0 < \mu < n+2$.
- For $n < \mu < n + 2$, this implies the Schauder estimates for the gradient.
- The estimate for μ = n and μ = 0 implies that the map F → ∇ω is a bounded linear operator from L[∞] to BMO and L² to L², respectively.

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

- Prove $F \in \mathcal{L}^{2,\mu}$ implies $\nabla \omega \in \mathcal{L}^{2,\mu}$ for all $0 < \mu < n+2$.
- For *n* < *µ* < *n* + 2, this implies the Schauder estimates for the gradient.
- The estimate for μ = n and μ = 0 implies that the map F → ∇ω is a bounded linear operator from L[∞] to BMO and L² to L², respectively. Stampaccia interpolation theorem implies that it must also be a bounded linear operator from L^p to L^p for all 2 ≤ p < ∞.

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

- Prove $F \in \mathcal{L}^{2,\mu}$ implies $\nabla \omega \in \mathcal{L}^{2,\mu}$ for all $0 < \mu < n+2$.
- For *n* < *µ* < *n* + 2, this implies the Schauder estimates for the gradient.
- The estimate for μ = n and μ = 0 implies that the map F → ∇ω is a bounded linear operator from L[∞] to BMO and L² to L², respectively. Stampaccia interpolation theorem implies that it must also be a bounded linear operator from L^p to L^p for all 2 ≤ p < ∞. A fixed point argument yields L^p estimates for the gradient for 2 ≤ p < ∞.

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

- Prove $F \in \mathcal{L}^{2,\mu}$ implies $\nabla \omega \in \mathcal{L}^{2,\mu}$ for all $0 < \mu < n+2$.
- For *n* < *µ* < *n* + 2, this implies the Schauder estimates for the gradient.
- The estimate for μ = n and μ = 0 implies that the map F → ∇ω is a bounded linear operator from L[∞] to BMO and L² to L², respectively. Stampaccia interpolation theorem implies that it must also be a bounded linear operator from L^p to L^p for all 2 ≤ p < ∞. A fixed point argument yields L^p estimates for the gradient for 2 ≤ p < ∞. A duality argument proves the same for 1 < p < 2.

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

- Prove $F \in \mathcal{L}^{2,\mu}$ implies $\nabla \omega \in \mathcal{L}^{2,\mu}$ for all $0 < \mu < n+2$.
- For *n* < *µ* < *n* + 2, this implies the Schauder estimates for the gradient.
- The estimate for μ = n and μ = 0 implies that the map F → ∇ω is a bounded linear operator from L[∞] to BMO and L² to L², respectively. Stampaccia interpolation theorem implies that it must also be a bounded linear operator from L^p to L^p for all 2 ≤ p < ∞. A fixed point argument yields L^p estimates for the gradient for 2 ≤ p < ∞. A duality argument proves the same for 1 < p < 2.
- Estimates for the Hessian follows from this by iterating.

lotivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

- Flatten the boundary and freeze coefficients at a boundary point.
- Write the system with the RHS as a divergence. Precisely,

- Prove $F \in \mathcal{L}^{2,\mu}$ implies $\nabla \omega \in \mathcal{L}^{2,\mu}$ for all $0 < \mu < n+2$.
- For *n* < *µ* < *n* + 2, this implies the Schauder estimates for the gradient.
- The estimate for μ = n and μ = 0 implies that the map F → ∇ω is a bounded linear operator from L[∞] to BMO and L² to L², respectively. Stampaccia interpolation theorem implies that it must also be a bounded linear operator from L^p to L^p for all 2 ≤ p < ∞. A fixed point argument yields L^p estimates for the gradient for 2 ≤ p < ∞. A duality argument proves the same for 1 < p < 2.
- Estimates for the Hessian follows from this by iterating.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	0

• The scheme is classical by now and is known to work for Dirichlet problem and conormal derivative problem for systems.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000		000	00●	O

- The scheme is classical by now and is known to work for Dirichlet problem and conormal derivative problem for systems.
- Adoption of the scheme to this type of boundary conditions is new.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	00●	O

- The scheme is classical by now and is known to work for Dirichlet problem and conormal derivative problem for systems.
- Adoption of the scheme to this type of boundary conditions is new.
- Requires modifications to carry out the scheme in the context of $W_T^{1,2}$ or $W_N^{1,2}$ spaces.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	00●	O

- The scheme is classical by now and is known to work for Dirichlet problem and conormal derivative problem for systems.
- Adoption of the scheme to this type of boundary conditions is new.
- Requires modifications to carry out the scheme in the context of $W_T^{1,2}$ or $W_N^{1,2}$ spaces.
- This method yields a new proof even in the case of the Hodge Laplacian.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	00●	O

- The scheme is classical by now and is known to work for Dirichlet problem and conormal derivative problem for systems.
- Adoption of the scheme to this type of boundary conditions is new.
- Requires modifications to carry out the scheme in the context of $W_T^{1,2}$ or $W_N^{1,2}$ spaces.
- This method yields a new proof even in the case of the Hodge Laplacian.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	00●	O

- The scheme is classical by now and is known to work for Dirichlet problem and conormal derivative problem for systems.
- Adoption of the scheme to this type of boundary conditions is new.
- Requires modifications to carry out the scheme in the context of $W_T^{1,2}$ or $W_N^{1,2}$ spaces.
- This method yields a new proof even in the case of the Hodge Laplacian.

Motivation	Problem and results	Existence and the Gaffney inequality	Regularity	The End
0000	000	000	000	•

Thank you