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Gauge theory on Riemannian manifolds Bundles, connections and curvatures

Gauge theory on Riemannian manifolds

Basic objects in gauge theory

Gauge theory is the study of the critical points of the Yang-Mills functional

YM (A) :=

∫
Mn

|FA|2 := −
∫
Mn

Tr (FA ∧ ∗FA) .

Mn is n-dim smooth compact oriented Riemannian manifold (mostly closed)

G is a finite dim compact Lie group: typically O(m),SO(m), U(m), SU(m)

A is a principal connection on a principal G -bundle over Mn

FA is the curvature of the connection A.

SU(2) - unit quaternions, su(2) - traceless 2× 2 cx. skew-Hermitian matrices.

Imp. Principal SU(2)-bundles: frame bundles for Quaternion line bundles

c2 = − 1
2p1 = χ classifies principal SU(2) bundles (and H line bundles) over M4.

The Hopf fibration π : S7 → S4 ∼ the tautological line bundle over HP1.

Swarnendu Sil (ETHZ) Approximation of weak G-bundles in high dimensions March 2020, IISc 3 / 36



Gauge theory on Riemannian manifolds Bundles, connections and curvatures

Gauge theory on Riemannian manifolds

Basic objects in gauge theory

Gauge theory is the study of the critical points of the Yang-Mills functional

YM (A) :=

∫
Mn

|FA|2 := −
∫
Mn

Tr (FA ∧ ∗FA) .

Mn is n-dim smooth compact oriented Riemannian manifold (mostly closed)

G is a finite dim compact Lie group: typically O(m),SO(m), U(m), SU(m)

A is a principal connection on a principal G -bundle over Mn

FA is the curvature of the connection A.

SU(2) - unit quaternions, su(2) - traceless 2× 2 cx. skew-Hermitian matrices.

Imp. Principal SU(2)-bundles: frame bundles for Quaternion line bundles

c2 = − 1
2p1 = χ classifies principal SU(2) bundles (and H line bundles) over M4.

The Hopf fibration π : S7 → S4 ∼ the tautological line bundle over HP1.

Swarnendu Sil (ETHZ) Approximation of weak G-bundles in high dimensions March 2020, IISc 3 / 36



Gauge theory on Riemannian manifolds Bundles, connections and curvatures

Principal G -bundles and connections

Smooth and C 0 Principal G -bundles

A smooth principal G -bundle P over Mn, denoted π : P → Mn, is locally just a
product, i.e. for Mn =

⋃
α∈I Uα, we have P|Uα ' Uα × G .

Bundle trivialization maps and transition maps

Bundle trivialization maps: For every α ∈ I , fiber-preserving smooth diffeos

φα : Uα × G → π−1 (Uα) ,

which are G -equivariant: i.e. whenever Uα ∩ Uβ 6= ∅, there exist smooth maps,
called transition functions (or clutching functions)

gαβ : Uα ∩ Uβ → G

such that for every h ∈ G and every x ∈ Uα ∩ Uβ , we have(
φ−1
α ◦ φβ

)
(x , h) = (x , gαβ(x)h). (1)
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Gauge theory on Riemannian manifolds Bundles, connections and curvatures

Bundles as transition function data

Cocycle conditions

From the relation (1), the transition functions satisfy the cocycle identity

gαβ(x)gβγ(x) = gαγ(x) for every x ∈ Uα ∩ Uβ ∩ Uγ . (2)

Bundles as transition function data

P =
(
{Uα}α∈I , {gαβ}α,β∈I

)
∈ P∞G (Mn) , or P0

G (Mn) if gαβ only C 0.

Two C 0 bundles P,Q ∈ P0
G (Mn) are C 0-equivalent , denoted by [P]C 0 = [Q]C 0 ,

if there are continuous maps σα : Uα → G such that

hαβ = σ−1
α gαβσβ in Uα ∩ Uβ .

C 0-equivalent bundles are the ‘same’ for topology. This is a sheaf-theoretic
description and bundles are basically a C̆ech cohomology class (non-Abelian!).
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Gauge theory on Riemannian manifolds Bundles, connections and curvatures

Connection and gauges

Connection (Ehresmann/Principal) on a smooth principal G -bundle

Locally, A ∈ A∞ (P) is given by smooth Aα : Uα → Λ1T ∗Uα ⊗ g satisfying the
gluing relations

Aβ = g−1
αβ dgαβ + g−1

αβAαgαβ in Uα ∩ Uβ . (3)

Gauges: Maps ρα : Uα → G . Induces a change of trivializations

φραα (x , h) = φα(x , ρα(x)h) for all x ∈ Uα and for all h ∈ G .

{Aραα }α∈I satisfy the gauge change identities

Aραα = ρ−1
α dρα + ρ−1

α Aαρα in Uα. (4)

New transition functions:

hαβ = ρ−1
α gαβρβ in Uα ∩ Uβ .
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Gauge theory on Riemannian manifolds Bundles, connections and curvatures

Curvature and Yang-Mills energy

Curvature of a connection

FAα : Uα → Λ2T ∗Uα ⊗ g are the local expressions of the curvature of A, given by

FAα = dAα + Aα ∧ Aα = dAα +
1

2
[Aα,Aα] in Uα, (5)

where
Aα ∧ Aα =

∑
i,j

AiAjdxi ∧ dxj =
∑
i<j

[Ai ,Aj ] dxi ∧ dxj .

gluing relation:
FAβ = g−1

αβ FAαgαβ in Uα ∩ Uβ .

gauge change identities:

FAραα = ρ−1
α FAαρα in Uα. (6)
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Gauge theory on Riemannian manifolds Yang-Mills Functional

Yang-Mills energy

Yang-Mills energy

YM (A) :=

∫
Mn

|FA|2 := −
∫
Mn

Tr (FA ∧ ∗FA) .

The invariance of the Killing scalar product together with (6) implies that the
norm |FA| is gauge invariant and so is YM.

Yang-Mills fields

Euler-Lagrange equation is the ( elliptic ) Yang-Mills Equation

d∗AFA = 0 (YM) and dAFA = 0 ( Bianchi identity ).

Weak/smooth solutions: Weak/smooth Yang-Mills fields;

Intermediate notion: Stationary Yang-Mills fields;

Special solutions: ASD or Ω-ASD instantons (More on bonus slide).
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Gauge theory on Riemannian manifolds Main questions in higher dimensions

The rainbow in the horizon

Yang-Mills Plateau problem for n ≥ 5 :

Existence of minimizer for m := inf

{
YM(A) =

∫
Mn

|FA|2 : ι∗∂MnA = η

}
.

Regularity of minimizers and more generally, for stationary connections.

Tian’s regularity conjecture for stationary Yang-Mills fields [19]

If A is a stationary YM field with YM(A) <∞, then there exists a closed subset
Σ with Hn−5 (Σ ∩ K ) <∞ for any K ⊂⊂ Mn such that in some gauge, A is
smooth in Mn \ Σ.

Stationary Yang-Mills fields

A critical point A of YM on Bn
1 (0)× G is stationary if for all vector fields

X ∈ C∞0 (Bn
1 (0) ;Rn) , the flow φt of χ satisfies

d

dt

∫
Bn

1 (0)

|φ∗t FA|2
∣∣∣∣∣
t=0

= 0.
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Gauge theory on Riemannian manifolds Weak compactness, Coulomb gauges and topology change

Weak compactness and gauge fixing

Weak compactness for YM energy

{(Pν ,Aν)}ν≥1 with YM (Aν) is uniformly bounded. We want a limiting bundle
with a connection (P∞,A∞) such that YM (A∞) ≤ lim inf YM (Aν) .

YM is not coercive! (gauge invariance) Gauge fixing.
Gaffney inequality – controlling ‖dA‖Lp and ‖d∗A‖Lp controls ‖∇A‖Lp .
Use gauge freedom to choose local Coulomb gauges, i.e.

d∗Aραα = d∗
(
ρ−1
α dρα + ρ−1

α Aαρα
)

= 0 in Uα.

FA ∈ L2 implies, at best, A ∈W 1,2. By Sobolev embedding, W 1,2 ↪→ L
2n

n−2 .
Thus for n ≤ 3, the subcritical dimensions, the quadratic term A ∧ A is a
compact perturbation. For the critical dimension n = 4, W 1,2 ↪→ L4, but
the embedding is not compact. For n ≥ 5, the supercritical dimensions,
the L2 norm of A ∧ A can not be controlled at all by the W 1,2 norm of A.
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the embedding is not compact. For n ≥ 5, the supercritical dimensions,
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Gauge theory on Riemannian manifolds Weak compactness, Coulomb gauges and topology change

Uhlenbeck solved both problems for n = 4 under the assumption of small energy.

Theorem (Coulomb gauges in the critical dimension, Uhlenbeck ’82 [20] )

There exists εUh = εUh (G ) > 0, such that if A ∈W 1,2
(
B4
R × G

)
and

‖FA‖L2(B4
R ;Λ2R4⊗g) < εUh, then there exists ρ ∈W 2,2

(
B4
R ;G

)
such that

d∗Aρ = 0 in B4
R , ι∗∂B4

R
(∗Aρ) = 0 on ∂B4

R .

and CCoulomb ≥ 1 such that we have the scale-invariant estimate

‖∇Aρ‖L2(B4
R ;Rn×n⊗g) + ‖Aρ‖L4(B4

R ;Λ1R4⊗g) ≤ CCoulomb ‖FA‖L2(B4
R ;Λ2R4⊗g) .

The gauge changes are only W 2,2 and need not be continuous. For sequences of
smooth YM fields on a smooth bundle P with uniformly bopunded YM energy,
we can extract weak limiting connection A∞, but bubbling occurs , i.e. energy
can concentrate on a finite discrete set (Sedlacek [14]). Using Uhlenbeck’s
removable singularity result, there is a smooth limiting bundle P∞, but P∞

can be topologically different. (Freed-Uhlenbeck [4], Taubes [18], Lawson [8]).
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Approximation for manifold-valued Sobolev maps Topology below the continuity threshold

Does topology need continuity?

Brouwer Degree

u : Sn → Sn is continuous. How ‘many’ such ‘distinct’ maps are there?

One for every integer. Every map is assigned an integer, called the degree.

Computes πn (Sn) = Z.

Can a ‘W 1,p map’ have a degree? u ∈W 1,p ≈ u ∈ Lp,∇u ∈ Lp.(1 < p <∞)
Yes if p > n ( Sobolev-Morrey embedding: u ∈W 1,p ≈ u ∈ C 0,1− n

p ).

Degree p = n and beyond (Schoen-Uhlenbeck [13], Brezis-Nirenberg [2])

W 1,n maps have a degree. More generally,

VMO maps have a degree. u ∈ VMO ≈ limr→0 ηu(r) = 0, where

ηu(r) := sup
x,0<ρ<r

1

ρn

∫
B(x,ρ)

∣∣∣u − (u)B(x,ρ)

∣∣∣ .
Both results are proved by approximation by smooth maps.
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Approximation for manifold-valued Sobolev maps Approximation of manifold-valued Sobolev maps

Manifold-valued maps

Sobolev maps between manifolds

Mn,Nm smooth, Riemannian, Nm cpt with ∂Nm = ∅, Nm ↪→ Rl iso. (Nash).

u ∈W 1,p (Mn;Nm) :=
{
u ∈W 1,p

(
Mn;Rl

)
, u(x) ∈ Nm for a.e. x ∈ Mn

}
. (7)

u ∈W 1,p (Bn
1 ;Rm) . Find smooth uν

W 1,p

→ u. Mollify! works for any finite dim.
linear space target V . W 1,p (Bn

1 ;Nm) is a different animal altogether.

Density in Sobolev spaces of manifold-valued maps

(7) is not a linear space! uν need not be Nm-valued.
Density in W 1,p (Bn

1 ;N)?

Subcritical p > n, Yes. Continuity is important. Sobolev-Morrey embedding

Critical p = n, Still yes! Schoen-Uhlenbeck [13]. Harmonic maps.

Supercritical p < n, No!. Yes iff πbpc (Nm) = 0. Bethuel [1], Hang-Lin [5].
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Approximation and topology for bundles with connections

Approximation questions in gauge theory context

Questions

Is there an analogue of approximation result of W 1,n maps in our context?

Is there an analogue of approximation result of VMO maps in our context?

Can we define a notion of bundle topology in those settings?

What could be the analogue of the result in the supercritical case?

Results

The answer to all except the last one is Yes.

Sobolev case: The first one corresponds to approximation of W 1,4 bundles
with U1,4 connections ( locally A ∈ L4, dA ∈ L2 ).

Vanishing Morrey-Sobolev case: The second one corresponds to
approximation of W 1,VL4,n−4

bundles with VU1,L4,n−4

connections ( locally
A ∈ VL4,n−4, dA ∈ VL2,n−4 ).

The last one is not fully settled yet, but work in progress.
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Approximation and topology for bundles with connections

Monotonicity and Morrey norms

Theorem (Monotonicity formula, Price ’83, [11])

Let A be a stationary YM connection on the trivial bundle Bn
1 (0)× G , then for

any x , r such that Bn
r (x) ⊂⊂ Bn

1 (0), we have

d

dr

(
1

rn−4

∫
Bn
r (x)

|FA|2
)
≥ 0.

Monotonicity ⇒ L2 bounds on the curvature implies L2,n−4 bounds.

Morrey spaces

For 0 ≤ λ < n, u ∈ Lp,λ (Bn
1 ) ≈ ‖u‖pLp,λ := sup

x,r

1

rλ

∫
Bn
r (x)

|u|p <∞.

Morrey-Sobolev spaces: u ∈W 1,Lp,λ ≈ u ∈ Lp,λ,∇u ∈ Lp,λ.
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Approximation and topology for bundles with connections

Sobolev embeddings in Morrey-Sobolev spaces

Theorem (Adams)

Ω ⊂ Rn bounded, open, smooth, 1 < p < n and 0 ≤ λ < n − p, then we have,

u ∈W 1,Lp,λ

(Ω)⇒ u ∈ L
(n−λ)p
n−λ−p ,λ (Ω) .

For λ = n− 4, the integrability exponent is 4p/(4−p), i.e. p∗ in dimension 4.

Vanishing Morrey spaces

u ∈ VLp,λ (Bn
1 ) ≈ u ∈ Lp,λ (Bn

1 ) and limr→0 ηu(r) = 0, where

ηu(r) := sup
x,0<ρ<r

1

ρλ

∫
Bn
ρ(x)

|u|p .

For λ = 0, VLp,λ = Lp,λ = Lp. For λ > 0, VLp,λ ( Lp,λ and smooth
functions are strongly dense in VLp,λ, but not in Lp,λ.

u ∈W 1,VLp,λ ≈ u ∈ Lp,λ,∇u ∈ VLp,λ.
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Approximation and topology for bundles with connections Approximation for vanishing Morrey-Sobolev bundles with connections

Vanishing Morrey-Sobolev bundles

Vanishing Morrey-Sobolev bundles

P =
(
{Uα}α∈I , {gαβ}α,β∈I

)
∈ VP1,L4,n−4

G if gαβ ∈W 1,VL4,n−4

(Uα ∩ Uβ ;G )

for all α, β ∈ I with nonempty intersection and satisfies the cocycle condition

gαβ(x)gβγ(x) = gαγ(x) for a.e. x ∈ Uα ∩ Uβ ∩ Uγ . (8)

Possible Strategy

Approximate gαβ . Poincaré inequality and Hölder inequality imply

1

ρn

∫
B(x,ρ)

∣∣∣u − (u)B(x,ρ)

∣∣∣ ≤ 1

ρn−1

∫
B(x,ρ)

|∇u| ≤

(
1

ρn−4

∫
B(x,ρ)

|∇u|4
) 1

4

.

So u ∈W 1,VL4,n−4

(Ω)⇒ u ∈ VMO (Ω) . Difficulty: cocycle conditions (8).
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Approximation and topology for bundles with connections Approximation for vanishing Morrey-Sobolev bundles with connections

Approximation in the supercritical dimension

Use connections and Coulomb gauges

A ∈ VU1,L4,n−4

means Aα ∈ VL4,n−4 and dAα ∈ VL2,n−4 for every α. This is the
minimum assumption for FAα ∈ VL2,n−4.

Only elliptic estimates, easy in Abelian case, new point of view towards topology.

Theorem (Vanishing Morrey bundles with connections, S. ’20, S. ’19 [16])

Given any P ∈ VP1,L4,n−4

G (Mn) and A ∈ VU1,L4,n−4

(P) , there is a sequence of
smooth principal G -bundles Pν ∈ P∞G (Mn) with smooth connections

Aν ∈ A∞ (Pν) such that Pν
W 1,L4,n−4

'ρν P and for all i ,

gνij → gij in W 1,L4,n−4

and Aνi − (ρνi )∗ Ai → 0 in U1,L4,n−4

.

For n = 4, this reduces to approximation of U1,4 connections on W 1,4 bundles.
That case is also obtained earlier in Isobe ’09 [6] and the Abelian case in Isobe ’14
[7], both using approximation results for G -valued Sobolev maps.
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Approximation and topology for bundles with connections Approximation for vanishing Morrey-Sobolev bundles with connections

Approximation in the supercritical dimension

Theorem (Approximation in the Abelian case, S. ’19 [16], Isobe ’14 [7])

Let 2 < p <∞. Given P ∈ P1,p
S1 (Mn) and A ∈ U1,p (P) ( i.e. A ∈ Lp, dA ∈ L

p
2 ),

there exists {(Pν ,Aν)}ν≥1 , with Pν ∈ P∞S1 (Mn) and Aν ∈ A∞ (Pν) such that

Pν
W 1,p

'ρν P and gνij → gij in W 1,p and Aνi − (ρνi )∗ Ai → 0 in U1,p.

In all cases, approximation of bundles follows. Pick a partition of unity {ψα}α
subordinate to the cover {Uα}α∈I and define

Aα :=
∑

β∈I ,β 6=α,
Uα∩Uβ 6=∅

ψβg
−1
βαdgβα for each α ∈ I .

But does not exclude the possibility to have C 0-distinct sequences of smooth
bundles {Pν1 }ν≥1 ,{Pν2 }ν≥1 , both approximating P.
(Pν1 ,A

ν
1 )→ (P,A1) and (Pν2 ,A

ν
2 )→ (P,A2).
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Approximation and topology for bundles with connections Approximation for vanishing Morrey-Sobolev bundles with connections

Approximation result

Main steps of the proof

1 Given (P,A), pass to local Coulomb gauges for A and construct the Coulomb

bundles and connection (PACoulomb
,ACoulomb) which is W 1,VL4,n−4

gauge
equivalent to (P,A).

2 Show that PACoulomb
is actually a W 2,q ∩ C 0,α-bundle for any n

2 < q < n and
α < 1. ( This is the key point ).

3 Approximate PACoulomb
by smooth bundles Pν , which are W 1,VL4,n−4

( in fact
C 0 ) gauge equivalent ( Much cleaner due to the improved regularity).

4 Pull back A on Pν . The pullback is now a vanishing Morrey-Sobolev
connection on a smooth bundle.

5 Approximate locally by smooth connection forms and glue (a trick).

Remark on Isobe’s proof

Since P ∈W 1,n, approximating P directly is messier than Step 3 above. In the
Abelian case, needs Bethuel’s result and the fact that πi

(
S1
)

= 0 for all i ≥ 2.
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Approximation and topology for bundles with connections Approximation for vanishing Morrey-Sobolev bundles with connections

Local Coulomb gauges in Morrey-Sobolev setting

Theorem (Coulomb gauges, Meyer-Rivière ’03 [9], Tao-Tian ’04 [17])

There exists εUh = εUh (n,G ) > 0, such that if A ∈ VU1,L4,n−4

(Bn
R × G ) and

‖FA‖L2,n−4(Bn
R ;Λ2Rn⊗g) < εUh, then there exists ρ ∈W 1,VL4,n−4

(Bn
R ;G ) such that{

d∗Aρ = 0 in Bn
R ,

ι∗∂Bn
R

(∗Aρ) = 0 on ∂Bn
R

and CCoulomb ≥ 1 and we have the scale-invariant estimate

‖∇Aρ‖L2,n−4 + ‖Aρ‖L4,n−4 ≤ CCoulomb ‖FA‖L2,n−4 .

Meyer-Rivière [9] and Tao-Tian [17] proved this result for smooth connections,

which holds for VU1,L4,n−4

connections by density in vanishing Morrey-Sobolev
spaces.
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Approximation and topology for bundles with connections Regularity of Coulomb bundles

Regularity of Coulomb bundles

Theorem (Improved regularity of Coulomb bundles, S.’20)

Let P ∈ VP1,L4,n−4

G (Mn) and A ∈ VU1,L4,n−4

(P) be a connection on P which is
Coulomb, then P is a W 2,q ∩ C 0,α-bundle for any n

2 < q < n and α < 1.

This is in a sense quite striking. Both the bundle we started with and the
Coulomb gauges have only Morrey-Sobolev regularity and need not even be
continuous. But the Coulomb bundle is much more regular just by virtue of
the fact that the connection forms satisfies the Coulomb conditions.

For n = 4, this reduces to the critical dimension case.

Previous results for n = 4: Rivière ’02 [12], Shevchishin ’02 [15].
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Approximation and topology for bundles with connections Regularity of Coulomb bundles

Ingredients for the result

Lemma (Elliptic estimate in Morrey-Sobolev setting, S. ’20)

n ≥ 3,N ≥ 1 integers, 1 < m ≤ n
2 and m < p < 2m, Ω ⊂ Rn bounded, open. Let

B ∈ L2m,n−2m
(
Ω; Λ1Rn ⊗M (N)

)
and f ∈ Lp,n−2m

(
Ω;RN

)
. There exists ε∆Cr

such that if ‖B‖L2m,n−2m(Ω;Λ1Rn⊗M(N)) ≤ ε∆Cr
and u ∈W 1,L2,n−2m (

Ω;RN
)

solves

∆u = B · ∇u + f in Ω, (9)

then u ∈W 1,L
2mp

2m−p
,n−2m

loc

(
Ω;RN

)
with corresponding estimates.

From the gluing relation Aβ = g−1
αβ dgαβ + g−1

αβAαgαβ , we get,

d∗dgαβ = d∗ (gαβAβ − Aαgαβ) in Uα ∩ Uβ .

Since A is Coulomb, i.e. d∗Aα = 0 = d∗Aβ in Uα ∩ Uβ , we get,

−∆gαβ = ∗ [dgαβ ∧ (∗Aβ)] + ∗ [(∗Aα) ∧ dgαβ] in Uα ∩ Uβ .

Shrink the sets to get L2m,n−2m norms small enough.
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Approximation and topology for bundles with connections Topology for bundle-connection pair

Topology of weak bundles with connections

Definition of topology, S. ’20, also S ’19 [16]

Given P ∈ VP1,L4,n−4

G (Mn) and A ∈ VU1,L4,n−4

(P), one can associate the C 0

equivalence class of ‘the’ associated Coulomb bundle to the pair (P,A), which is

stable under W 1,VL4,n−4

gauge transformations.

Remarks on the definition

Our ‘topology’ is encoded in the pair (P,A), not to P alone! Stability is also
only under gauge transformation of both! Puzzling?!! For more regular P
and A, this assignment is independent of A. ( also the same as the usual
one ).

Earlier attempts by Isobe ’09 [6] and Shevchishin ’02 [15] in the critical
dimension are very different and associates an C 0 class to P alone.

Since we need to change gauges to obtain estimate for the connections, in a
sense the connection can ‘drag’ the bundle along with it. Our class can keep
a track of what the connections are doing.
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Approximation and topology for bundles with connections Topology for bundle-connection pair

Naturality of the topological class

As an illustration, we improve Theorem IV.2.,Rivière ’02 [12]).

Theorem (Stability of topology w/o concentration, S. ’19 [16])

Pν ∈ P1,4
G

(
M4
)
, Aν ∈ U1,4 (Pν) for ν ≥ 1 be sequences of bundles with

connections trivialized over a common cover such that YM (Aν) is uniformly

bounded and
{
|FAν |2

}
ν≥1

is equiintegrable in Mn. Then there exists

P∞ ∈ P1,4 ∩ P0
(
M4
)
, A∞ ∈W 1,2 (P∞) and a subsequence {Aνs}s≥1 such that

for large enough s, we have
[
Pνs
AνsCoulomb

]
C 0

= [P∞]C 0 and for every i ∈ I ,

(AνsCoulomb)i ⇀ A∞i weakly in W 1,2
(
U∞i ; Λ1T ∗U∞i ⊗ g

)
,

FAνsi
⇀ FA∞i

weakly in L2
(
U∞i ; Λ2T ∗U∞i ⊗ g

)
.

If Pν = P ∈ P∞G
(
M4
)

and Aν ∈ A∞(P) for all ν, then [P]C 0 = [P∞]C 0 .

Rivière [12] needed Aν to be strongly convergent in W 1,2 and d∗Aν to be
strongly convergent in the Lorentz space L(2,1), not gauge-invariant conditions.
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Approximation and topology for bundles with connections Topology for bundle-connection pair

Naturality of the topological class

Theorem (Flatness criterion, S ’19 [16])

For any cover U of M4, there exists a constant δ > 0, depending only on U , M4

and G such that if P is a W 1,4 bundle trivialized over U and A is a U1,4

connection on P, then

either YM (A) > δ or [PACoulomb
]C 0 =

[
P0
]
C 0 ,

where P0 is a flat C 0 bundle. If M4 is simply connected, P0 = M4 × G .

Proof.

If not, then there exist sequences Pν ∈ P1,4
G

(
M4
)
, Aν ∈ U1,4 (Pν) for ν ≥ 1

trivialized over U such that PνAνCoulomb
is not C 0 equivalent to any flat bundle for any

ν ≥ 1 and YM (Aν)→ 0. But then P∞ is flat and this contradicts the
stability.

This is the usual YM energy gap for smooth connections on smooth bundles.
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The road ahead What’s next?: Approximation by ‘almost’ smooth classes

Approximation by ‘Almost’ smooth classes

The vanishing Morrey-Sobolev result is clearly the best we can hope for if we
insist on approximation by smooth bundles and connections.

Idea from Bethuel’s proof of strong density in W 1,p iff πbpc (Nm) = 0.

Bethuel’s ‘almost’ smooth maps

Rp,∞ (Mn;Nm) :=

{
u ∈W 1,p (Mn;Nm) : u ∈ C∞loc (Mn \ Σ;Nm) ,Σ is

a finite union of (n − bpc − 1)-dimesnional submanifolds.

}

Theorem (Bethuel [1], Hang-Lin [5])

Rp,∞ (Mn;Nm) is dense in W 1,p (Mn;Nm) .

In terms of local pictures around the singular set, restriction of such maps to the
sphere Sbpc ⊂ Rbpc+1 in the plane transversal to Σ, can realize nontrivial
homotopy classes v : Sbpc → Nm.
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The road ahead What’s next?: Approximation by ‘almost’ smooth classes

Conjecture about density of almost smooth bundles

‘Almost’ smooth bundles of Petrache-Rivière [10]

R∞ (Mn,SU(2)) :=

{
(P,A) : A ∈ A∞ (P) ,P ∈ P∞SU(2) (Mn \ Σ) where Σ is

a finite union of (n − 5)-dimensional submanifolds.

}

Locally, restriction of the bundle to the sphere S4 ⊂ R5 in the 5-plane transversal
to Σ, can have nontrivial second Chern class c2. But in the smooth case, we can
see using transgression forms (also called Chern-Simons forms)∫
S4

Tr (FA ∧ FA) =

∫
B5

1

d Tr (FA ∧ FA) =

∫
B5

1

d

[
d Tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)]
= 0.

In general, d Tr (FA ∧ FA) =
∑

niδxi in D′
(
B5

1

)
, is possible.

Conjecture (ongoing work with Mircea Petrache and Tristan Rivière)

R∞ is strongly dense in P1,L4,n−4

SU(2) × U1,L4,n−4

.
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The road ahead Concluding words

Preprints and planned works

The preprint for the article on critical dimension can be found in arXiv [16].

Supercritical dimension results should appear in arXiv soon, either as a
separate article by me, or as part of an article coauthored with Mircea
Petrache (PUC Chile) and Tristan Rivière (ETH Zurich), which is still a work
in progress.
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Thank you
Questions?
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Bonus slide: Instantons

Instantons in complex geometry, special Holonomy and calibrated geometry

Self-duality and Yang-Mills fields [3], [19]

A connection form A on an SU(r) principal bundle over (Mn, g) is Ω-ASD
instanton for some closed (n − 4)−form Ω on Mn if

∗g FA = −Ω ∧ FA. (10)

For Ω-ASD instantons, the Bianchi identity implies the YM equation.

(M4, g) Riem., Ω ≡ 1. Then (10) ⇔ ASD instanton.

(M2m, g) Kähler, Ω = 1
(m−2)!ω

m−2
g . Then (10) ⇔ Hermitian-YM equation.

(M8, g) is a Calabi-Yau 4-fold, θ is holomorphic (4, 0) form with θ∧ θ̄ = 1
4!ω

4
g .

Take Ω = 4 Re(θ) + 1
2ω

2
g . Then (10) ⇔ SU(4)-instanton equation.

(M8, g) is a Spin(7) manifold. There is a parallel 4-form Ω, left invariant by
the action of Spin(7) such that (10) becomes Spin(7)-instanton equation.

(M7, g) is a G2 manifold. There is a parallel 3-form Ω left invariant by the
action of G2 such that (10) is called G2-instanton equation.
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