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Stein theorem and Nonlinear CZ theory Sobolev embedding and Stein theorem

Sobolev embedding and Stein theorem

Sobolev and Sobolev-Morrey embedding

u ∈W 1,p
loc (Rn), 1 < p <∞. (Also true for p = 1,∞). Then

Sobolev-Morrey if p > n, then u ∈ C
0, p−n

p

loc (Rn).

Critical Sobolev
u ∈W 1,n

loc (Rn) 6⇒ u ∈ L∞loc(Rn).

Example

u(x) = log log
(

1 + 1
|x|

)
∈W 1,n (Bn

1 ) for n > 1, but is unbounded near 0.

Sharp criterion for continuity

A big gap! p = n , not even bounded vs p = n + ε, Hölder continuous.
Is there a borderline space that implies ‘just’ continuity?
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Stein theorem and Nonlinear CZ theory Relevant function spaces

Lorentz spaces near Ln

Lorentz spaces

1 < p <∞, 1 ≤ q ≤ ∞. Interpolation spaces. More refined than Lp = L(p,p).

q <∞

f ∈ L(p,q) '
ˆ ∞

0

tq |{x : |f (x)| > t}|
q
p
dt

t
<∞.

q =∞ (Weak Lp)

f ∈ L(p,∞) ' sup
t>0

(tp |{x : |f (x)| > t}|) <∞.

Inclusion of Lorentz spaces near Ln

Lq = L(q,q) ( L(n,1) ( Ln = L(n,n) ( L(n,∞) for any q > n.

Example

u(x) = 1
|x| logβ( 1

|x| )
near zero is L(n,∞) for β ≥ 0, Ln for β ≥ 1 and L(n,1) for β > 1.

Swarnendu Sil (ETHZ) Nonlinear Stein for forms October 2020 4 / 31



Stein theorem and Nonlinear CZ theory Relevant function spaces

Campanato spaces

Campanato seminorm

1 < p <∞, 0 ≤ λ ≤ n + p. f ∈ Lp,λ if f ∈ Lp with [f ]pLp,λ <∞.

[f ]pLp,λ(Ω) = sup
x∈Ω

0<r<diam(Ω)

1

rλ

ˆ
Br (x)∩Ω

∣∣∣f − (f )(Br (x)∩Ω)

∣∣∣p ,
where (f )(Br (x)∩Ω) :=

1

|Br (x) ∩ Ω|

ˆ
Br (x)∩Ω

f :=

 
Br (x)∩Ω

f .

If n < λ ≤ n + p, then Lp,λ ' C 0,λ−n
p .

Lp,n ' BMO ( p = 1 is the BMO seminorm ). VMO is the closure of C∞c
functions under BMO seminorm, a strict subspace of BMO.

Example

log|x | ∈ BMO(B1), but not VMO(B1). logβ |x | ∈ VMO(B1) for 0 < β < 1.
log log|x | ∈ VMO(B1). So neither BMO nor VMO is contained in L∞.
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Stein theorem and Nonlinear CZ theory Relevant function spaces

Theorem (Stein 1981, Ann. of Math [11])

u ∈W
1,(n,1)
loc (Rn)⇒ u ∈ C 0

loc(Rn).

Some other Lorentz-Sobolev embeddings

u ∈W
1,(n,∞)
loc (Rn)⇒ u is locally BMO.

u ∈W 1,n
loc (Rn)⇒ u is locally VMO.

PDE formulation using CZ estimates

Interpolation spaces ⇒ Calderon-Zygmund estimates hold.

∆u ∈ L
(n,1)
loc ⇒ ∇u ∈W

1,(n,1)
loc

(∥∥∇2u
∥∥
Lp ' ‖∆u‖Lp

)
(CZ estimates)

⇒ ∇u is continuous (Stein theorem)

Similarly, ∆u ∈ L
(n,∞)
loc ⇒ ∇u ∈ BMOloc , ∆u ∈ Lnloc ⇒ ∇u ∈ VMOloc and

∆u ∈ Lqloc for some q > n⇒ ∇u ∈ C 0,β
loc for some 1 < β < 1.
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Stein theorem and Nonlinear CZ theory Nonlinear CZ theory

Nonlinear Calderon-Zygmund theory

Nonlinear CZ theory: Scalar case

Uraltseva, Iwaniec, Manfredi, DiBenedetto, Kilpeläinen, Maly, Acerbi,
Fusco, Lewis, Lindqvist, Lieberman, Duzaar, Mingione, Kuusi and many,
many, many others....

div
(
|∇u|p−2∇u

)
= f

For p 6= 2, u /∈ C∞loc even for f = 0! However, u ∈ C 1,β
loc for some 0 < β < 1.

Long story short: Gradient estimates still hold for p > 2. linear and
nonlinear Potential estimates.... which also extends to the general case

div a (∇u) = f .

Kuusi-Mingione (ARMA 2013) [6] f ∈ L(n,1) ⇒ ∇u is continuous.
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Stein theorem and Nonlinear CZ theory Systems and Uhlenbeck structure

Equations to systems

Nonlinear CZ theory: Vectorial case

divA (Du) = f ( Remark: div is row-wise here.)

Systems are very different! Everywhere regularity is, in general, not true!

Uhlenbeck, Acta Math 1977 [12] (elliptic complexes), Hamburger, J.
Reine. Angew. Math 1992 [5] (vector-valued differential forms)
Everywhere Hölder continuity of Du holds true if f = 0 and

A(Du) ' Dg(Du) with g(Du) = g (|Du|) .

Uhlenbeck structure, Quasidiagonal structure. True for homogeneous

p-Laplacian system div
(
|Du|p−2 Du

)
= 0.
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Stein theorem and Nonlinear CZ theory Systems and Uhlenbeck structure

Nonlinear Stein theorem: Vectorial case

Inhomogeneous systems

div
(
a(x) |Du|p−2 Du

)
= f , 0 < γ ≤ a(x) ≤ L <∞.

Dini continuity

a : Ω→ [γ, L] is Dini-continuous if there exists a concave, non-decreasing function
ω : [0,∞)→ [0, 1] ( modulus of continuity ) with ω(0) = 0 such that for every
x , y ∈ Ω, we have |a(x)− a(y)| ≤ Lω (|x − y |) and we have

ˆ diam(Ω)

0

ω (ρ)
dρ

ρ
<∞.

Theorem (Kuusi-Mingione, Calc. Var. PDE 2014 [7])

a is Dini continuous , f ∈ L(n,1) ⇒ Du is continuous.

Sharp with respect to the regularity of both the coefficients and the right hand
side, already for p = 2 and also for L∞ bounds for Du.
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System for differential forms New features for general k-forms

p-Laplacian for vector-valued form

Analogue for vector-valued form

u, f : Rn → ΛkRn ⊗ RN , 0 ≤ k ≤ n − 1. ( k = n − 1 ' Sobolev embedding )

d∗
(
a(x) |du|p−2 du

)
= f (d , d∗ componentwise )

Features -

k = 0,N = 1 — p-Laplacian equation.

k = 0,N ≥ 2 — p-Laplacian system.

1 ≤ k ≤ n − 1;N ≥ 1 — not elliptic! ( in the strict sense )
u is a solution ⇒ u + φ is a solution for any closed form φ, ( i.e dφ = 0 ) ⇒
The kernel is infinite dimensional.
However, elliptic complex structure — d∗f = 0 is a necessary condition
since d∗ ◦ d∗ = 0. Thus, elliptic modulo the kernel.
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System for differential forms Main results

Regularity results

Standing assumptions:

n ≥ 2, N ≥ 1, 1 < p <∞, 0 ≤ k ≤ n − 1,

Ω ⊂ Rn open, bounded, ( Hk
T (Ω) = {0}. )

a : Ω→ [γ, L] with 0 < γ ≤ L <∞,
d∗f = 0 in Ω in the sense of distributions,

u ∈W 1,p
loc

(
Ω; ΛkRn ⊗ RN

)
is a local solution to

d∗
(
a(x) |du|p−2 du

)
= f in Ω.

Theorem (Stein theorem for forms (S., Calc. Var. PDE 2019, [10] ))

If a is Dini continuous and f ∈ L
(n,1)
loc

(
Ω; ΛkRn ⊗ RN

)
, then du is continuous in Ω

and ∇u is locally VMO modulo a closed ( exact ) form.

Swarnendu Sil (ETHZ) Nonlinear Stein for forms October 2020 11 / 31



System for differential forms Main results

Regularity results

Standing assumptions:

n ≥ 2, N ≥ 1, 1 < p <∞, 0 ≤ k ≤ n − 1,

Ω ⊂ Rn open, bounded, ( Hk
T (Ω) = {0}. )

a : Ω→ [γ, L] with 0 < γ ≤ L <∞,
d∗f = 0 in Ω in the sense of distributions,

u ∈W 1,p
loc

(
Ω; ΛkRn ⊗ RN

)
is a local solution to

d∗
(
a(x) |du|p−2 du

)
= f in Ω.

Theorem (Stein theorem for forms (S., Calc. Var. PDE 2019, [10] ))

If a is Dini continuous and f ∈ L
(n,1)
loc

(
Ω; ΛkRn ⊗ RN

)
, then du is continuous in Ω

and ∇u is locally VMO modulo a closed ( exact ) form.

Swarnendu Sil (ETHZ) Nonlinear Stein for forms October 2020 11 / 31



System for differential forms Main results

Campanato estimates for the gradient for p ≥ 2

d∗
(
a(x) |du|p−2 du

)
= d∗F in Ω. (1)

Let p ≥ 2, and let β is the Hölder exponent for V (dv) for the homogeneous
constant coefficient system and let a ∈ C 0,α

loc (Ω) and 0 ≤ λ < min{n+ 2α, n+ 2β}.

Theorem (Campanato estimate (S., Calc. Var. PDE 2019, [10]))

F ∈ Lp
′
,λ

loc ⇒ ∇u ∈ L
2, np−2n+2λ

p

loc , modulo an closed ( exact ) form.

This implies, modulo an closed ( exact ) form, we have

f ∈ Lqloc for some q > n ⇒ u ∈ C 1,θ
loc for some 0 < θ < 1.

f ∈ Lnloc ⇒ ∇u is locally VMO.

f ∈ L
(n,∞)
loc ⇒ ∇u is locally BMO.

This generalizes DiBenedetto-Manfredi, Amer. J. Math. 1993 [3].

See also
Diening-Kaplický-Schwarzacher, Nonlinear Anal. 2012 [4] and
Breit-Cianchi-Diening-Kuusi-Schwarzacher, J. Math. Pures Appl. 2018 [2].
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System for differential forms Main results

Vector fields in dimension three

Ω ⊂ R3 is open, bounded, contractible, 1 < p <∞, a : Ω→ [γ, L] with
0 < γ ≤ L <∞. Let div f = 0 in Ω and u ∈W 1,p

loc

(
Ω;R3

)
is a solution to

curl
(
a(x) |curl u|p−2 curl u

)
= f in Ω.

Theorem (Stein theorem for vector fields in dimension three)

If a is Dini continuous and f ∈ L
(3,1)
loc

(
Ω;R3

)
, then curl u is continuous in Ω.

Theorem (Campanato estimate for vector fields in dimension three)

If p ≥ 2, a ∈ C 0,α
loc (Ω), then modulo a gradient field, we have

f ∈ L
(3,∞)
loc

(
Ω;R3

)
⇒ ∇u ∈ BMOloc

(
Ω;R3 ⊗ R3

)
,

f ∈ L3
loc

(
Ω;R3

)
⇒ ∇u ∈ VMOloc

(
Ω;R3 ⊗ R3

)
,

f ∈ Lqloc
(
Ω;R3

)
for some q > 3⇒ u ∈ C 1,β

loc

(
Ω;R3

)
.
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Techniques Getting the comparison estimates

Comparison for inhomogeneous system

u ∈W 1,p
loc

(
Rn;RN

)
solves

div
(
a(x) |Du|p−2 Du

)
= f . (2)

Pick a point x0 ∈ Rn and we first solve ( unique solution exists )div
(
a(x) |Dw |p−2 Dw

)
= 0 in BR(x0)

w = u on ∂BR(x0).
(3)

Then we solve ( unique solution exists )div
(
a(x0) |Dv |p−2 Dv

)
= 0 in BR/2(x0)

v = w on ∂BR/2(x0).
(4)
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Techniques Getting the comparison estimates

Comparison for inhomogeneous system

u − w ∈W 1,p
0

(
BR(x0);RN

)
+ weak formulations of (2) and (3) ⇒

ˆ
BR (x0)

a(x)
〈
|Du|p−2 Du − |Dw |p−2 Dw ; u − w

〉
=

ˆ
BR (x0)

〈f ; u − w〉 . (5)

ˆ
BR (x0)

|Du − Dw |p ≤ LHS by monotonicity (p ≥ 2)

|RHS| ≤

(ˆ
BR (x0)

|f |(p
∗)
′
) 1

(p∗)
′

R

(ˆ
BR (x0)

|Du − Dw |p
) 1

p

, (*)

by Hölder and Sobolev-Poincaré.
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Techniques Getting the comparison estimates

Trouble for forms

Naive analogy can not work.d∗
(
a(x) |dw |p−2 dw

)
= 0 in BR(x0)

w = u on ∂BR(x0).

No unique solution .

‖du − dw‖Lp does not control any of the following norms

‖∇u −∇w‖Lp , ‖u − w‖W 1,p , ‖u − w‖Lp∗ .
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Techniques Getting the comparison estimates

Gauge fixing

We need to quotient out the kernel and restore ellipticity .

First heuristic idea

The system

d∗
(
a(x) |du|p−2 du

)
= f (E1)

is ( locally ) equivalent to

d∗
(
a(x) |du|p−2 du

)
= f and d∗u = 0. (E2)

Picks out only one, the unique ‘nicest’ representative from each class
{u + φ : φ closed } ' Projection onto the quotient by the kernel.
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Techniques Getting the comparison estimates

The space W d,p
d∗,T

W 1,p
0 is not the correct space. W 1,p

d∗,T = W d,p
d∗,T is!

W d,p
d∗,T

(
BR(x0); ΛkRn ⊗ RN

)
=
{
u ∈ Lp : du ∈ Lp, d∗u = 0 in BR(x0), ι∗∂BR (x0)u = 0 on ∂BR(x0)

}
= C∞c (BR(x0); ΛkRn ⊗ RN) ∩ Ker d∗

‖·‖
Wd,p

Technical gain of gauge fixing

The system (E2) admits an existence theory and a weak formulation in W d,p
d∗,T .

Look for u ∈W d,p
d∗,T

(
BR(x0); ΛkRn ⊗ RN

)
satisfying

ˆ
BR (x0)

〈
a(x) |du|p−2 du; dφ

〉
=

ˆ
BR (x0)

〈f ;φ〉 for all φ ∈W d,p
d∗,T .
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Techniques Getting the comparison estimates

Comparison systems

Second idea

For comparison, use the systems
d∗
(
a(x) |dw |p−2 dw

)
= 0 in BR(x0)

d∗w = d∗u in BR(x0)

ι∗∂BR (x0)w = ι∗∂BR (x0)u on ∂BR(x0).

and 
d∗
(
a(x0) |dv |p−2 dv

)
= 0 in BR/2(x0)

d∗v = d∗w in BR/2(x0)

ι∗∂BR (x0)v = ι∗∂BR/2(x0)w on ∂BR/2(x0).
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Techniques Existence and weak formulations

Existence and uniqueness for comparison systems

Existence and uniqueness of solutions. ( modulo cohomology ).

Solutions are unique minimizers for

Minimize m = inf

{
1

p

ˆ
BR

a(x) |du|p : u ∈ u0 + W d,p
d∗,T

}
.

Clearly, the weak formulations in W d,p
d∗,T is valid.

Minimization on u0 + W 1,p
0 is possible, intimately related.

Bandyopadhyay-Dacorogna-S., JEMS 2015 [1](N = 1);
S., Adv. Calc. Var 2019 [9] (N ≥ 2).
Allows one to work with the naive analogy for the case f = d∗F and obtain
analogues of Diening-Kaplický-Schwarzacher, Nonlinear Anal. 2012 [4] and
Breit-Cianchi-Diening-Kuusi-Schwarzacher, J. Math. Pures Appl. 2018 [2]

by deriving estimate for A(du) := |du|p−2 du.

The remark about forms in [4]
missed that there is an issue with existence when 1 ≤ k ≤ n − 1. Existence for
such systems was settled in S. PhD thesis, 2016 [8] and published in [1] and [9]
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Techniques Poincaré-Sobolev and Gaffney inequalities

W d,p
d∗,T again

Gaffney inequality

Lp and Campanato estimates for the linear elliptic system

du = f and d∗u = g in BR ,

ι∗∂BR
u = ι∗∂BR

u0 on ∂BR .

‖∇u‖Lp(BR ) ≤ C

(
‖f ‖Lp(BR ) + ‖g‖Lp(BR ) + ‖u0‖

W
1− 1

p
,p

(∂BR )

)
BR has trivial cohomology. W d,p

d∗,T = W 1,p
d∗,T .

Poincaré-Sobolev inequality

If u ∈W d,p
d∗,T

(
BR ; ΛkRn ⊗ RN

)
, 1 < p < n and p∗ = np

n−p , then

( 
BR

|u|p
∗
) 1

p∗

≤ cR

( 
BR

|du|p
) 1

p

.
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Schematic outline of the proofs Campanato estimates

Campanato estimate for p ≥ 2

Basically linear estimates for the nonlinear quantity

V (du) = |du|
p−2

2 du, Also possible using A(du) = |du|p−2 du.

Comparison estimates
ˆ
BR

|V (du)− V (dw)|2 ≤ c

ˆ
BR

∣∣F − (F )BR

∣∣ p
p−1 .

ˆ
BR

|V (dv)− V (dw)|2 ≤ c [ω (R)]2
ˆ
BR

|V (dw)|2.
ˆ
Bρ

∣∣∣V (dv)− (V (dv))Bρ

∣∣∣2 ≤ c
( ρ
R

)n+2β2
ˆ
BR

∣∣V (dv)− (V (dv))BR

∣∣2 .
From V (du) to du

V (du) ∈ L2,λ ⇒ du ∈ Lp,λ ⇒ du ∈ L2, np−2n+2λ
p

From du to ∇u : du ∈ L2, np−2n+2λ
p and d∗u = 0⇒ ∇u ∈ L2, np−2n+2λ

p .
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Schematic outline of the proofs Stein theorem

Homogeneous system with Dini coefficients for p ≥ 2

To prove the Stein theorem result, as an intermediate step we need to prove the
theorem for p ≥ 2 and f = 0, i.e. for the system

d∗
(
a(x) |dw |p−2 dw

)
= 0 in Ω.

Basic strategy

First prove for any ball BR ⊂⊂ Ω, the L∞ estimate,

sup
BR/2

|dw | ≤ c

 
BR

|dw | .

Then using the L∞ bound to show that the continuous maps

αi (x) :=

 
BRi

(x)

dw

converge uniformly as i →∞ on any compact subset K ⊂ Ω. Thus, the limit
is a continuous map which agrees a.e. with dw . Hence dw is continuous.
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Schematic outline of the proofs Stein theorem

Pointwise estimate for homogeneous system with Dini coefficients for p ≥ 2

Comparison estimates in shrinking ball Bi := BRi with Ri := σiR.

 
Bi

|V (dvi )− V (dw)|2 ≤ c4 [ω (Ri )]2
 
Bi

|V (dw)|2 .

Set λ
p
2 := H1

( 
BR

|V (dw)|2
) 1

2

and choose H1 large, R and σ small.

Excess decay: Let E2 (V (dw),Bi ) :=

( 
Bi

∣∣V (dw)− (V (dw))Bi

∣∣2) 1
2

 
Bi

|V (dw)|2 ≤ λp ⇒ E2 (V (dw),Bi+1) ≤ 1

4
E2 (V (dw),Bi ) + cλ

p
2ω(Ri ).

Prove by induction that
∣∣(V (dw))Bi

∣∣+ E2 (V (dw),Bi ) ≤ λ
p
2 for all i .

|dw(x)| ≤ lim inf
i→∞

∣∣(dw)Bi

∣∣ ≤ ( 
Bi

|V (dw)|
) 2

p

≤ λ, for any Lebesgue point x .

Swarnendu Sil (ETHZ) Nonlinear Stein for forms October 2020 24 / 31



Schematic outline of the proofs Stein theorem

Stein theorem

Basic strategy

First prove for any ball BR ⊂⊂ Ω and every Lebesgue point x of du, the
pointwise estimate,

|du(x)| ≤ c

( 
BR

|du|s
) 1

s

+ ‖f ‖
1

p−1

L(n,1) ,

where s = p
′

if p > 2 and s = p if 1 < p < 2.

Then using the L∞ bound to show that the continuous maps

αi (x) :=

 
BRi

(x)

du

converge uniformly as i →∞ on any compact subset K ⊂ Ω. Thus, the limit
is a continuous map which agrees a.e. with du. Hence du is continuous.

Considerably more involved estimates. However, with our comparison systems and
our Poincaré-Sobolev inequality, becomes exactly analogous to the k = 0 case.
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Future questions Potential estimates

Next...

Moral of the story so far

Estimates for ∇u for the inhomogeneous p-Laplacian type systems
 Analogous estimates for du for the inhomogeneous systems for forms .

How far is this the general picture? only for du or valid for the full gradient?

Possible extensions

Campanato estimate for the gradient for 1 < p < 2?

Estimate for A(du) is possible by following the work by Diening and
collaborators in [4] and [2] with the existence issue fixed by [1] and [9]. But
in this range of p, those estimates does not imply estimates for du or ∇u.
linear and nonlinear potential estimates? ( Typically Riesz potential bounds
for the gradient and Wolff potential bounds for the form ). Work in progress.
Note that Morrey estimates i.e. a Nonlinear Adams theorem would be
implied by potential estimates for the gradient.
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Future questions Sharp gradient estimates and nonlinear Sobolev embedding

Gradient estimates and nonlinear Sobolev embedding

An interesting ( and probably difficult ) question:
For u coclosed ( d∗u = 0 ), if

d∗
(
|du|p−2du

)
∈ L

(n,1)
loc ⇒? u ∈ C 1

loc? u ∈ C 0,1
loc ?

Positive answer to the first question yields an improved pointwise nonlinear Stein
theorem for scalar functions!

∇
(
|v |p−2v

)
∈ L

(n,1)
loc ⇒ v is locally the Laplacian of a C 2(C 1,1) function ?

Note that not every continuous function is the Laplacian of a C 2 function. For
k = n − 1, the system is

∇
(
|div u|p−2 div u

)
∈ L

(n,1)
loc

Write
v = ∆ψ = div (∇ψ) and u = ∇ψ.

Then u ∈ C 1
loc(C 0,1

loc )⇒ ψ ∈ C 2
loc(C 1,1

loc ).

Note that p = 2 case is implied by Stein
theorem and CZ estimates.
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The End

Thank you
Questions?
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