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Stein theorem and Nonlinear CZ theory = Sobolev embedding and Stein theorem

Sobolev embedding and Stein theorem

Sobolev and Sobolev-Morrey embedding
ue WEP(R"),1 < p < co. (Also true for p = 1,00). Then

loc
p—n
p

@ Sobolev-Morrey if p > n, then u € C,?,C (R").
o Critical Sobolev

ue WER™) 4 ue LS(RM).

loc loc

Example

x|

u(x) = loglog (1 + %) € WL (BJ) for n > 1, but is unbounded near 0.
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Stein theorem and Nonlinear CZ theory = Sobolev embedding and Stein theorem

Sobolev embedding and Stein theorem

Sobolev and Sobolev-Morrey embedding
ue WEP(R™),1 < p < oc. (Also true for p=1,00). Then

loc
p=n
@ Sobolev-Morrey if p > n, then u € C,?;C > (R™).
o Critical Sobolev
ue WER™) 4 ue LS(RM).

loc

Example

x|

u(x) = loglog (1 + i) € WL (BJ) for n > 1, but is unbounded near 0.

Sharp criterion for continuity

A big gap! p = n, not even bounded vs p = n+ ¢, Holder continuous.
Is there a borderline space that implies ‘just’ continuity?
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Stein theorem and Nonlinear CZ theory Relevant function spaces

Lorentz spaces near L"

Lorentz spaces

1< p<oo,1<qg< oco. Interpolation spaces. More refined than LP = L(P:P),
@ g< X
> a dt
f e LPa) :/ 19 F ()] > 1}7 S < oo,
0

@ g = oo (Weak LP)

f e LP) = sup (7 [{x : |f(x)] > t}]) < 0.
t>0

Inclusion of Lorentz spaces near L"”

L9 = @) c () ¢ pn—mn) c [(m)  for any g > n.

Example

u(x) = W near zero is L(m>) for 3 >0, L" for 3> 1 and L(™V for B > 1.
X T

V.
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Stein theorem and Nonlinear CZ theory Relevant function spaces

Campanato spaces

Campanato seminorm

1<p<o00,0< A< ntp. feLPif felP with [f]5,, < oo.

p

)

1
f p,, = sup —/ ‘f —(f N
[f12 A(Q) o ™ Jaigne (g one)
0<r<diam(Q)

1
h f = nal Fi= "
where ( )(B,(x)mn) |B,(x) N Q| /BV(X)QQ f.‘;’,(x)mﬂ

o If n< A< n+p,then £PA ~ CO75"
e LP"~ BMO ( p=1isthe BMO seminorm ). VMO is the closure of C2°
functions under BMO seminorm, a strict subspace of BMO.

Example

log|x| € BMO(By), but not VMO(By). log?|x| € VMO(By) for 0 < 3 < 1.
log log|x| € VMO(By). So neither BMO nor VMO is contained in L*°.
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Stein theorem and Nonlinear CZ theory Relevant function spaces

Theorem (Stein 1981, Ann. of Math [11])

ue Wl (R") = u e CO(R").

oc
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Stein theorem and Nonlinear CZ theory Relevant function spaces

Theorem (Stein 1981, Ann. of Math [11])

ue WEPDRY = y e 2 (R™).

loc

Some other Lorentz-Sobolev embeddings

ue WE(RM) =y is locally BMO.

ue WENR™) = uis locally VMO.

loc
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Stein theorem and Nonlinear CZ theory Relevant function spaces

Theorem (Stein 1981, Ann. of Math [11])

ue WEPDRY = y e 2 (R™).

loc

Some other Lorentz-Sobolev embeddings

ue WE(RM) =y is locally BMO.

C

ue WENR™) = uis locally VMO.

loc

PDE formulation using CZ estimates

Interpolation spaces = Calderon-Zygmund estimates hold.

Aue " = vy e wlhim (|[Vul],, ~ |Aull,)  (CZ estimates)

loc c

= Vu is continuous (Stein theorem)

Similarly, Au € L") = Vu € BMOpe, Au € L7 = Vu € VMOjpe and

loc loc

Au e L] _forsome g>n= Vue C%5 for some 1 < p <1l

loc
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Stein theorem and Nonlinear CZ theory Nonlinear CZ theory

Nonlinear Calderon-Zygmund theory

Nonlinear CZ theory: Scalar case

Uraltseva, Iwaniec, Manfredi, DiBenedetto, Kilpeldinen, Maly, Acerbi,
Fusco, Lewis, Lindqvist, Lieberman, Duzaar, Mingione, Kuusi and many,
many, many others....

div (|vu|"*2 vu) =f

For p # 2, u ¢ C even for f = 0! However, u € C,i’f for some 0 < 3 < 1.

@ Long story short: Gradient estimates still hold for p > 2. linear and
nonlinear Potential estimates.... which also extends to the general case

diva(Vu) =f.

o Kuusi-Mingione (ARMA 2013) [6] f € L(™Y) = Vu is continuous.
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Stein theorem and Nonlinear CZ theory  Systems and Uhlenbeck structure

Equations to systems

Nonlinear CZ theory: Vectorial case

divA(Du) =f ( Remark: div is row-wise here.)
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Stein theorem and Nonlinear CZ theory  Systems and Uhlenbeck structure

Equations to systems

Nonlinear CZ theory: Vectorial case

divA(Du) =f ( Remark: div is row-wise here.)

@ Systems are very different! Everywhere regularity is, in general, not true!

@ Uhlenbeck, Acta Math 1977 [12] (elliptic complexes), Hamburger, J.

Reine. Angew. Math 1992 [5] (vector-valued differential forms)
Everywhere Holder continuity of Du holds true if f =0 and

A(Du) ~ Dg(Du) with g(Du) = g (|Dul) .

Uhlenbeck structure, Quasidiagonal structure. True for homogeneous
p-Laplacian system div <|Du|p_2 Du) =0.
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Stein theorem and Nonlinear CZ theory  Systems and Uhlenbeck structure

Nonlinear Stein theorem: Vectorial case

Inhomogeneous systems

div (a(x) | Du|P~2 Du) =f, 0<vy<a(x)<L<oo.

Dini continuity

a: Q — [v, L] is Dini-continuous if there exists a concave, non-decreasing function
w: [0,00) = [0,1] ( modulus of continuity ) with w(0) = 0 such that for every
x,y € Q, we have |a(x) — a(y)| < Lw (|x — y|) and we have

diam(2) d
/ w(p) L < .
0 p

Theorem (Kuusi-Mingione, Calc. Var. PDE 2014 [7])

a is Dini continuous , f € L""Y) = Du is continuous.

Sharp with respect to the regularity of both the coefficients and the right hand
side, already for p = 2 and also for L>° bounds for Du.
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System for differential forms New features for general k-forms

p-Laplacian for vector-valued form

Analogue for vector-valued form
u f:R" - AR"@RN, 0< k<n—1.( k=n—1= Sobolev embedding )

d* (a(x) |du|P~? du) =f  (d,d* componentwise )
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System for differential forms New features for general k-forms

p-Laplacian for vector-valued form

Analogue for vector-valued form

u f:R" - AR"@RN, 0< k<n—1.( k=n—1= Sobolev embedding )

d* (a(x) |du|P~? du) =f  (d,d* componentwise )
Features -

e k=0,N=1 — p-Laplacian equation.
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System for differential forms New features for general k-forms
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Analogue for vector-valued form

u f:R" - AR"@RN, 0< k<n—1.( k=n—1= Sobolev embedding )

d* (a(x) |du|P~? du) =f  (d,d* componentwise )

Features -
e k=0,N=1 — p-Laplacian equation.
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System for differential forms New features for general k-forms

p-Laplacian for vector-valued form

Analogue for vector-valued form

u f:R" - AR"@RN, 0< k<n—1.( k=n—1= Sobolev embedding )

d* (a(x) |du|P~? du) =f  (d,d* componentwise )

Features -
e k=0,N=1 — p-Laplacian equation.
e k=0,N2>2 — p-Laplacian system.
el<k<n—-1,N>1 — not elliptic! ( in the strict sense )

u is a solution = u + ¢ is a solution for any closed form ¢, (i.e dp =0)
The kernel is infinite dimensional.

However, elliptic complex structure — d*f = 0 is a necessary condition
since d* o d* = 0. Thus, elliptic modulo the kernel.

=
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System for differential forms Main results

Regularity results

Standing assumptions:
on>2 N>1,1<p<oo,0<k<n—-1,
Q C R" open, bounded, ( H% (Q) = {0}. )
a: Q= [y,with0<y<L<oo,
d*f =0 in Q in the sense of distributions,
e whr (€2; AKR" @ RN) is a local solution to

loc

d* (a(x) |dulP™? du) =f in Q.
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System for differential forms Main results

Regularity results

Standing assumptions:
on>2 N>1,1<p<oo,0<k<n—-1,
Q C R" open, bounded, ( H% (Q) = {0}. )
a: Q= [y,with0<y<L<oo,
d*f =0 in Q in the sense of distributions,
e whr (€2; AKR" @ RN) is a local solution to

loc

d* (a(x) |dulP™? du) =f in Q.

Theorem (Stein theorem for forms (S., Calc. Var. PDE 2019, [10] ))

If a is Dini continuous and f € L,gcl) (S AKR" @ RN), then du is continuous in Q

and Vu is locally VMO modulo a closed ( exact ) form.
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System for differential forms Main results

Campanato estimates for the gradient for p > 2

d* (a(x) \dulP~2 du) —dF  inQ.

Let p > 2, and let 3 is the Holder exponent for V/(dv) for the homogeneous

(1)

constant coefficient system and let a € C2*(Q) and 0 < A < min{n+2a, n+23}.

loc

Theorem (Campanato estimate (S., Calc. Var. PDE 2019, [10]))
, np—2n12
Fefb?=Vue L2777 modulo an closed ( exact ) form.

loc

This implies, modulo an closed ( exact ) form, we have
o fel]l forsomeg>n=ue C,}j’f for some 0 < 0 < 1.
o fel]l = Vuis locally VMO.

loc

o fell™™ = vyis locally BMO.

loc

This generalizes DiBenedetto-Manfredi, Amer. J. Math. 1993 [3].
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System for differential forms Main results

Campanato estimates for the gradient for p > 2

d* (a(x) \dulP~2 du) —dF  inQ. (1)

Let p > 2, and let 3 is the Holder exponent for V/(dv) for the homogeneous
constant coefficient system and let a € C2*(Q) and 0 < A < min{n+2a, n+23}.

loc

Theorem (Campanato estimate (S., Calc. Var. PDE 2019, [10]))

2, mp=2nt2)

FeflP*=vVuecL, *° , moduloan closed ( exact ) form.

loc loc

This implies, modulo an closed ( exact ) form, we have
o fell

loc

o fell = Vuislocally VMO.

loc

o fell™™ = vyis locally BMO.

loc
This generalizes DiBenedetto-Manfredi, Amer. J. Math. 1993 [3]. See also
Diening-Kaplicky-Schwarzacher, Nonlinear Anal. 2012 [4] and
Breit-Cianchi-Diening-Kuusi-Schwarzacher, J. Math. Pures Appl. 2018 [2].
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System for differential forms Main results

Vector fields in dimension three

Q C R? is open, bounded, contractible, 1 < p < 0o, a: Q — [y, L] with
0<y<L<oo Letdivfi=0inQand u € wkp (Q;R3) is a solution to

loc

curl (a(x) |curl uP~2 curl u) =f in Q.

Theorem (Stein theorem for vector fields in dimension three)

If a is Dini continuous and f € ngél) (Q; R3), then curl u is continuous in €.

Theorem (Campanato estimate for vector fields in dimension three)
Ifp>2 a€ C,?J’Ca(Q), then modulo a gradient field, we have

o fe L™ (R = Vue BMOu (U R3®R?),

e fec L,3OC (Q; R3) = Vu e VMO, (Q; R3® R3) ,

o fell (R3) forsomeq>3=uc cL8 (4 R3).

loc
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Techniques Getting the comparison estimates

Comparison for inhomogeneous system

u € WP (R™RN) solves
div (a(x) | DulP 2 Du) =f. (2)
Pick a point xp € R" and we first solve ( unique solution exists )
div (a(x) |Dw|P~? DW) =0 in Bgr(x)
w=u on JBgr(x).
Then we solve ( unique solution exists )
div (a(xo) |Dv|P~2 Dv) =0 in Brya(x)

v=w on dBg/(x).
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Techniques Getting the comparison estimates

Comparison for inhomogeneous system

u—w € Wy? (Br(x); RV) + weak formulations of (2) and (3) =
/ a(x)<|Du|p_2 Du — |Dw|P~? DW;u—W> :/ (fru—w). (5)
Br(x0) Br(x0)

/ |Du— Dw|? < LHS by monotonicity (p > 2)
Br(x0)

1

1
AN P
< u—>Lbw )
RHS £1¢e7) R Du — Dw| *
BR(Xo) BR(XO)

by Holder and Sobolev-Poincaré.
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Techniques Getting the comparison estimates

Trouble for forms

Naive analogy can not work.

o

d* (a(x) ldw|P2 dw) = in Br(x0)

w=u on JBr(xp).

@ No unique solution .

® ||du — dwl|,, does not control any of the following norms

IVu=Vwlp, lu=wllw,, l[u—=wl-.
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Techniques Getting the comparison estimates

Gauge fixing

We need to quotient out the kernel and restore ellipticity .

First heuristic idea
The system

d* (a(x) |dulP > du) —f (E1)
is ( locally ) equivalent to
* p—2 %
d (a(x) \du| du) =f and  d'u=0. (E2)

Picks out only one, the unique ‘nicest’ representative from each class
{u+ ¢ : ¢ closed } ~ Projection onto the quotient by the kernel.
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Techniques Getting the comparison estimates

d,
The space Wj.”;

Lp Lp _ yydp
W;'" is not the correct space. W, = Wy is!

W2 (Br(x0); A“R” @ R")
= {u €LP:due P, d*u=0in Br(x0), thgy(x)u =0 on 8BR(XO)}

= C (Br(x0); AR" @ RV) N Ker d*|\'|\wd,p

Technical gain of gauge fixing

The system (E2) admits an existence theory and a weak formulation in Wd;pT.

Look for u € Wj*’fT (Br(x0); AKR" @ RN) satisfying

/ <a(x)|du|”*2 du; d¢> :/ (fi¢) forall g€ WP
BR(XO) BR(XO) ’
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Techniques Getting the comparison estimates

Comparison systems

Second idea

For comparison, use the systems
d* (a(x) |dw|P~2 dw) -0
d*w=d*u
LoBr(x)W = LoBr(x)Y
and
d* (a(xo) |dv|P~2 dv) -0
d'v=d'w

* %
LaBr(x0)Y = 0Bra(x0)W

in BR(XO)

in Br(xo)
on 0Bgr(xp).

in Br/2(x0)

in Bgr/2(xo)
on 9Bg/2(x0)-
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Techniques Existence and weak formulations

Existence and uniqueness for comparison systems

e Existence and uniqueness of solutions. ( modulo cohomology ).

@ Solutions are unique minimizers for
_ . 1
Minimize m = inf {/ a(x)|dul® : u € ug + Wd*’pT} .
P JBg ’

Clearly, the weak formulations in W:; T is valid.

Minimization on ug + Wol’p is possible, intimately related.
Bandyopadhyay-Dacorogna-S., JEMS 2015 [1](N = 1);

S., Adv. Calc. Var 2019 [9] (N > 2).

Allows one to work with the naive analogy for the case f = d*F and obtain
analogues of Diening-Kaplicky-Schwarzacher, Nonlinear Anal. 2012 [4] and
Breit-Cianchi-Diening-Kuusi-Schwarzacher, J. Math. Pures Appl. 2018 [2]
by deriving estimate for A(du) := |dul?~? du.
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Techniques Existence and weak formulations

Existence and uniqueness for comparison systems

e Existence and uniqueness of solutions. ( modulo cohomology ).

@ Solutions are unique minimizers for
_ . 1
Minimize m = inf {/ a(x)|dul® : u € ug + Wd*’pT} .
P JBg ’

Clearly, the weak formulations in W:; T is valid.

Minimization on ug + Wol’p is possible, intimately related.
Bandyopadhyay-Dacorogna-S., JEMS 2015 [1](N = 1);

S., Adv. Calc. Var 2019 [9] (N > 2).

Allows one to work with the naive analogy for the case f = d*F and obtain
analogues of Diening-Kaplicky-Schwarzacher, Nonlinear Anal. 2012 [4] and
Breit-Cianchi-Diening-Kuusi-Schwarzacher, J. Math. Pures Appl. 2018 2]
by deriving estimate for A(du) := |du|P~? du. The remark about forms in [4]
missed that there is an issue with existence when 1 < k < n — 1. Existence for
such systems was settled in S. PhD thesis, 2016 [8] and published in [1] and [9]
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Techniques Poincaré-Sobolev and Gaffney inequalities

d,p .
W, "1 again

Gaffney inequality

LP and Campanato estimates for the linear elliptic system

du=f and d'u=g in Bg,

LHBRU = LB, Uo on 0Bg.

190y < € (1l + Ielloon + 16011355 )

BE dp _ ywlp
Bg has trivial cohomology. W™ = W,:"+.

Poincaré-Sobolev inequality

If u € WP (Bri AR" @ RV), 1< p < nand p* = 2, then

n—

1
3

(o) sl )
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Schematic outline of the proofs Campanato estimates
Campanato estimate for p > 2
@ Basically linear estimates for the nonlinear quantity
p=2 . . _
V(du) = |du| 7 du, Also possible using A(du) = |dulP~? du.

@ Comparison estimates

Vi) = Vi) < ¢ [ [F = (P, 77

Br

|V(dv) = V(dw)]” < clw(R)* [ [V(dw)>.
Bgr Br

[, (vt - i, [ < (5)" [ Vi) - (vians, [

e From V(du) to du

np— 2n+2A

V(du) € £>* = du € LP? = du € L

np—2n+2X 2n+2A

np—2n+2
P

e From duto Vu:du € L£* and d*u=0= Vue L>

Swarnendu Sil (ETHZ) Nonlinear Stein for forms October 2020
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Schematic outline of the proofs  Stein theorem

Homogeneous system with Dini coefficients for p > 2

To prove the Stein theorem result, as an intermediate step we need to prove the
theorem for p > 2 and f =0, i.e. for the system

d* (a(x) |dw (P2 dW) =0 in Q.

Basic strategy
@ First prove for any ball Bg CC €, the L*> estimate,

sup |dw| < c][ |[dw|.
Br

Br/2

@ Then using the L*° bound to show that the continuous maps

a;(x) :—]{Ee ( )dW

converge uniformly as i — oo on any compact subset K C Q. Thus, the limit
is a continuous map which agrees a.e. with dw. Hence dw is continuous.
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Schematic outline of the proofs  Stein theorem

Pointwise estimate for homogeneous system with Dini coefficients for p > 2

@ Comparison estimates in shrinking ball B; := Bg, with R; := o'R.

][|v (dv;) — V(dw)]? < ¢ [w (R))] ][ [V (dw)|?.

2
Set A2 := H, (7[ |V(dw)2> and choose H; large, R and o small.
Br

Excess decay: Let B, (V(dw), B;) := (][ |V (dw) — (V(dW))B;|2) :

][ IV (dw)[> < NP = E (V(dw), Biy1) < %EQ (V(dw), B)) + cA*w(R)).
B;

Prove by induction that |(V(dw))g | + E2 (V(dw), Bj) < A3 for all i.

N}

ldw(x)| < liminf [(dw)g | < (][ |V(dw)> g < A, for any Lebesgue point x.
i—00 ! B;
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Schematic outline of the proofs  Stein theorem

Stein theorem

Basic strategy

@ First prove for any ball B CC Q and every Lebesgue point x of du, the
pointwise estimate,

s _1
du(x)| < ¢ (f W) =
Br

Wheres:p/ ifp>2ands=pifl<p<?2.

@ Then using the L*° bound to show that the continuous maps

a;(x) ::]{3 ( )du

converge uniformly as i — oo on any compact subset K C Q. Thus, the limit
is a continuous map which agrees a.e. with du. Hence du is continuous.

Considerably more involved estimates. However, with our comparison systems and
our Poincaré-Sobolev inequality, becomes exactly analogous to the k = 0 case.
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Future questions Potential estimates

Next...

Moral of the story so far

Estimates for Vu for the inhomogeneous p-Laplacian type systems
~> Analogous estimates for du for the inhomogeneous systems for forms .

How far is this the general picture? only for du or valid for the full gradient?

Possible extensions

@ Campanato estimate for the gradient for 1 < p < 27
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Moral of the story so far

Estimates for Vu for the inhomogeneous p-Laplacian type systems
~> Analogous estimates for du for the inhomogeneous systems for forms .

How far is this the general picture? only for du or valid for the full gradient?

Possible extensions

@ Campanato estimate for the gradient for 1 < p < 27
Estimate for A(du) is possible by following the work by Diening and
collaborators in [4] and [2] with the existence issue fixed by [1] and [9]. But
in this range of p, those estimates does not imply estimates for du or Vu.

Swarnendu Sil (ETHZ) Nonlinear Stein for forms October 2020 26 /31



Future questions Potential estimates

Next...

Moral of the story so far

Estimates for Vu for the inhomogeneous p-Laplacian type systems
~> Analogous estimates for du for the inhomogeneous systems for forms .

How far is this the general picture? only for du or valid for the full gradient?

Possible extensions

@ Campanato estimate for the gradient for 1 < p < 27
Estimate for A(du) is possible by following the work by Diening and
collaborators in [4] and [2] with the existence issue fixed by [1] and [9]. But
in this range of p, those estimates does not imply estimates for du or Vu.

@ linear and nonlinear potential estimates? ( Typically Riesz potential bounds
for the gradient and Wolff potential bounds for the form ). Work in progress.
Note that Morrey estimates i.e. a Nonlinear Adams theorem would be
implied by potential estimates for the gradient.
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Future questions  Sharp gradient estimates and nonlinear Sobolev embedding

Gradient estimates and nonlinear Sobolev embedding

An interesting ( and probably difficult ) question:
For u coclosed ( d*u=0), if

* (|dulP~2du) € LY =? ueClr2uectl?

loc loc
Positive answer to the first question yields an improved pointwise nonlinear Stein

theorem for scalar functions!

/oc

V (Jv|P2v) € L{™D = v is locally the Laplacian of a C?(C*™1) function ?

Note that not every continuous function is the Laplacian of a C? function. For
k = n—1, the system is

Y (|divulP~2divu) € LD

loc

Write
v=Ay=div(Vy) and u=V.

Then u e /oc(Cloc) =Y e C‘loc(C/oc)
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Future questions  Sharp gradient estimates and nonlinear Sobolev embedding

Gradient estimates and nonlinear Sobolev embedding

An interesting ( and probably difficult ) question:
For u coclosed ( d*u=0), if

* (|dulP~2du) € LY =? ueClr2uectl?

loc loc

Positive answer to the first question yields an improved pointwise nonlinear Stein
theorem for scalar functions!

V (Jv|P2v) € L{™D = v is locally the Laplacian of a C?(C*™1) function ?

/oc
Note that not every continuous function is the Laplacian of a C? function. For
k = n—1, the system is
Y (|divulP~2divu) € LD

loc

Write
v=Ay=div(Vy) and u=V.

Then u e CL(C1) = o € C2.(CHY). Note that p = 2 case is implied by Stein

theorem and CZ estimates.
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The End

Thank you
Questions?
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