Nonlinear Stein theorem for Differential Forms

Swarnendu Sil

Forschungsinstitut für Mathematik ETH Zurich

> 27th October, 2020 Online Seminar Universität Bielefeld Germany

Outline

- Sobolev embedding and Stein theorem
- Relevant function spaces
- Nonlinear CZ theory
- Systems and Uhlenbeck structure

2 System for differential forms

- New features for general k-forms
- Main results

3 Techniques

- Getting the comparison estimates
- Existence and weak formulations
- Poincaré-Sobolev and Gaffney inequalities
- Schematic outline of the proofs
 - Campanato estimates
 - Stein theorem

5 Future questions

- Potential estimates
- Sharp gradient estimates and nonlinear Sobolev embedding

Sobolev embedding and Stein theorem

Sobolev and Sobolev-Morrey embedding

 $u \in W^{1,p}_{loc}(\mathbb{R}^n), 1 (Also true for <math>p = 1, \infty$). Then

- Sobolev-Morrey if p > n, then $u \in C_{loc}^{0,\frac{p-n}{p}}(\mathbb{R}^n)$.
- Critical Sobolev

$$u \in W^{1,n}_{loc}(\mathbb{R}^n) \not\Rightarrow u \in L^{\infty}_{loc}(\mathbb{R}^n).$$

Example

$$u(x) = \log \log \left(1 + \frac{1}{|x|}\right) \in W^{1,n}(B_1^n)$$
 for $n > 1$, but is unbounded near 0.

Sobolev embedding and Stein theorem

Sobolev and Sobolev-Morrey embedding

 $u \in W^{1,p}_{loc}(\mathbb{R}^n), 1 (Also true for <math>p = 1, \infty$). Then

- Sobolev-Morrey if p > n, then $u \in C^{0, \frac{p-n}{p}}_{loc}(\mathbb{R}^n)$.
- Critical Sobolev

$$u \in W^{1,n}_{loc}(\mathbb{R}^n) \not\Rightarrow u \in L^{\infty}_{loc}(\mathbb{R}^n).$$

Example

$$u(x) = \log \log \left(1 + \frac{1}{|x|}\right) \in W^{1,n}(B_1^n)$$
 for $n > 1$, but is unbounded near 0.

Sharp criterion for continuity

A big gap! p = n, not even bounded vs $p = n + \varepsilon$, Hölder continuous. Is there a borderline space that implies '*just*' continuity?

Lorentz spaces near Lⁿ

Lorentz spaces

 $1 Interpolation spaces. More refined than <math>L^p = L^{(p,p)}$. • $q < \infty$ $f \in L^{(p,q)} \simeq \int_0^\infty t^q |\{x : |f(x)| > t\}|^{\frac{q}{p}} \frac{\mathrm{d}t}{t} < \infty.$ • $q = \infty$ (Weak L^p) $f \in L^{(p,\infty)} \simeq \sup_{t>0} (t^p |\{x : |f(x)| > t\}|) < \infty.$

Inclusion of Lorentz spaces near Lⁿ

$$L^q = L^{(q,q)} \subsetneq L^{(n,1)} \subsetneq L^n = L^{(n,n)} \subsetneq L^{(n,\infty)}$$
 for any $q > n$.

Example

$$u(x) = \frac{1}{|x| \log^{\beta}\left(\frac{1}{|x|}\right)} \text{ near zero is } L^{(n,\infty)} \text{ for } \beta \ge 0, L^{n} \text{ for } \beta \ge 1 \text{ and } L^{(n,1)} \text{ for } \beta > 1.$$

Campanato spaces

w

Campanato seminorm

$$1$$

$$[f]_{\mathcal{L}^{p,\lambda}(\Omega)}^{p} = \sup_{\substack{x \in \Omega \\ 0 < r < \operatorname{diam}(\Omega)}} \frac{1}{r^{\lambda}} \int_{B_{r}(x) \cap \Omega} \left| f - (f)_{(B_{r}(x) \cap \Omega)} \right|^{p},$$

where
$$(f)_{(B_r(x)\cap\Omega)} := \frac{1}{|B_r(x)\cap\Omega|} \int_{B_r(x)\cap\Omega} f := \oint_{B_r(x)\cap\Omega} f.$$

- If $n < \lambda \leq n + p$, then $\mathcal{L}^{p,\lambda} \simeq C^{0,\frac{\lambda-n}{p}}$.
- $\mathcal{L}^{p,n} \simeq BMO$ (p = 1 is the BMO seminorm). VMO is the closure of C_c^{∞} functions under BMO seminorm, a strict subspace of BMO.

Example

 $\log |x| \in BMO(B_1)$, but not $VMO(B_1)$. $\log^{\beta} |x| \in VMO(B_1)$ for $0 < \beta < 1$. $\log \log |x| \in VMO(B_1)$. So neither *BMO* nor *VMO* is contained in L^{∞} .

Swarnendu Sil (ETHZ)

Theorem (Stein 1981, Ann. of Math [11])

$$u \in W^{1,(n,1)}_{loc}(\mathbb{R}^n) \Rightarrow u \in C^0_{loc}(\mathbb{R}^n).$$

Theorem (Stein 1981, Ann. of Math [11])

$$u \in W^{1,(n,1)}_{loc}(\mathbb{R}^n) \Rightarrow u \in C^0_{loc}(\mathbb{R}^n).$$

Some other Lorentz-Sobolev embeddings

$$u \in W^{1,(n,\infty)}_{loc}(\mathbb{R}^n) \Rightarrow u$$
 is locally *BMO*.
 $u \in W^{1,n}_{loc}(\mathbb{R}^n) \Rightarrow u$ is locally *VMO*.

Theorem (Stein 1981, Ann. of Math [11])

$$u \in W^{1,(n,1)}_{loc}(\mathbb{R}^n) \Rightarrow u \in C^0_{loc}(\mathbb{R}^n).$$

Some other Lorentz-Sobolev embeddings

$$u \in W^{1,(n,\infty)}_{loc}(\mathbb{R}^n) \Rightarrow u$$
 is locally BMO.
 $u \in W^{1,n}_{loc}(\mathbb{R}^n) \Rightarrow u$ is locally VMO.

PDE formulation using CZ estimates

Interpolation spaces \Rightarrow Calderon-Zygmund estimates hold.

$$\begin{aligned} \Delta u \in L_{loc}^{(n,1)} \Rightarrow \nabla u \in W_{loc}^{1,(n,1)} & \left(\left\| \nabla^2 u \right\|_{L^p} \simeq \left\| \Delta u \right\|_{L^p} \right) & (\mathsf{CZ estimates}) \\ \Rightarrow \nabla u \text{ is continuous} & (\mathsf{Stein theorem}) \end{aligned}$$

Similarly,
$$\Delta u \in L_{loc}^{(n,\infty)} \Rightarrow \nabla u \in BMO_{loc}, \Delta u \in L_{loc}^n \Rightarrow \nabla u \in VMO_{loc}$$
 and $\Delta u \in L_{loc}^q$ for some $q > n \Rightarrow \nabla u \in C_{loc}^{0,\beta}$ for some $1 < \beta < 1$.

Nonlinear Calderon-Zygmund theory

Nonlinear CZ theory: Scalar case

Uraltseva, Iwaniec, Manfredi, DiBenedetto, Kilpeläinen, Maly, Acerbi, Fusco, Lewis, Lindqvist, Lieberman, Duzaar, Mingione, Kuusi and many, many, many others....

$$\operatorname{div}\left(\left|\nabla u\right|^{p-2}\nabla u\right)=f$$

For $p \neq 2$, $u \notin C_{loc}^{\infty}$ even for f = 0! However, $u \in C_{loc}^{1,\beta}$ for some $0 < \beta < 1$.

• Long story short: Gradient estimates still hold for *p* > 2. linear and nonlinear Potential estimates.... which also extends to the general case

$$\operatorname{div} a(\nabla u) = f.$$

• Kuusi-Mingione (ARMA 2013) [6] $f \in L^{(n,1)} \Rightarrow \nabla u$ is continuous.

Equations to systems

Nonlinear CZ theory: Vectorial case

```
\operatorname{div} A(Du) = f (Remark: div is row-wise here.)
```

Equations to systems

Nonlinear CZ theory: Vectorial case

 $\operatorname{div} A(Du) = f$ (Remark: div is row-wise here.)

• Systems are very different! Everywhere regularity is, in general, not true!

Equations to systems

Nonlinear CZ theory: Vectorial case

 $\operatorname{div} A(Du) = f$ (Remark: div is row-wise here.)

- Systems are very different! Everywhere regularity is, in general, not true!
- Uhlenbeck, Acta Math 1977 [12] (elliptic complexes), Hamburger, J. Reine. Angew. Math 1992 [5] (vector-valued differential forms) Everywhere Hölder continuity of Du holds true if f = 0 and

 $A(Du) \simeq Dg(Du)$ with g(Du) = g(|Du|).

Uhlenbeck structure, **Quasidiagonal structure**. True for homogeneous *p*-Laplacian system $div \left(|Du|^{p-2} Du \right) = 0.$

Nonlinear Stein theorem: Vectorial case

Inhomogeneous systems

$$\operatorname{div}\left(\mathsf{a}(x) \left| \mathsf{D} u
ight|^{p-2} \mathsf{D} u
ight) = f, \qquad 0 < \gamma \leq \mathsf{a}(x) \leq \mathsf{L} < \infty,$$

Dini continuity

 $a: \Omega \to [\gamma, L]$ is Dini-continuous if there exists a concave, non-decreasing function $\omega: [0, \infty) \to [0, 1]$ (modulus of continuity) with $\omega(0) = 0$ such that for every $x, y \in \Omega$, we have $|a(x) - a(y)| \le L\omega(|x - y|)$ and we have

$$\int_{0}^{\operatorname{\mathsf{diam}}(\Omega)}\omega\left(
ho
ight)rac{\mathrm{d}
ho}{
ho}<\infty.$$

Theorem (Kuusi-Mingione, Calc. Var. PDE 2014 [7])

a is Dini continuous , $f \in L^{(n,1)} \Rightarrow Du$ is continuous.

Sharp with respect to the regularity of both the coefficients and the right hand side, already for p = 2 and also for L^{∞} bounds for Du.

Swarnendu Sil (ETHZ)

Nonlinear Stein for forms

Analogue for vector-valued form

$$u, f: \mathbb{R}^n o \Lambda^k \mathbb{R}^n \otimes \mathbb{R}^N, \, 0 \le k \le n-1.$$
 ($k = n-1 \simeq$ Sobolev embedding)

$$d^{st}\left(\left. m{a}(x) \left| du
ight|^{p-2} du
ight) = f \qquad (d,d^{st} ext{ componentwise })$$

Analogue for vector-valued form

$$u, f: \mathbb{R}^n o \Lambda^k \mathbb{R}^n \otimes \mathbb{R}^N, \, 0 \le k \le n-1.$$
 ($k = n-1 \simeq$ Sobolev embedding)

$$d^{st}\left(\mathsf{a}(\mathsf{x}) \left| \mathsf{d} u
ight|^{p-2} \mathsf{d} u
ight) = f \qquad (\mathsf{d}, \mathsf{d}^{st} ext{ componentwise })$$

Features -

• k = 0, N = 1 — *p*-Laplacian equation.

Analogue for vector-valued form

$$u, f: \mathbb{R}^n \to \Lambda^k \mathbb{R}^n \otimes \mathbb{R}^N, \, 0 \le k \le n-1.$$
 ($k = n-1 \simeq$ Sobolev embedding)

$$d^{st}\left(\mathsf{a}(\mathsf{x}) \left| \mathsf{d} u
ight|^{p-2} \mathsf{d} u
ight) = f \qquad (\mathsf{d}, \mathsf{d}^{st} ext{ componentwise })$$

- k = 0, N = 1 *p*-Laplacian equation.
- $k = 0, N \ge 2$ *p*-Laplacian system.

Analogue for vector-valued form

$$u, f: \mathbb{R}^n o \Lambda^k \mathbb{R}^n \otimes \mathbb{R}^N, \, 0 \le k \le n-1.$$
 ($k = n-1 \simeq$ Sobolev embedding)

$$d^{st}\left(\mathsf{a}(\mathsf{x}) \left| \mathsf{d} \mathsf{u}
ight|^{p-2} \mathsf{d} \mathsf{u}
ight) = f \qquad (\mathsf{d}, \mathsf{d}^{st} ext{ componentwise })$$

- k = 0, N = 1 *p*-Laplacian equation.
- $k = 0, N \ge 2$ *p*-Laplacian system.
- $1 \le k \le n-1$; $N \ge 1$ not elliptic! (in the strict sense)

Analogue for vector-valued form

$$u, f: \mathbb{R}^n o \Lambda^k \mathbb{R}^n \otimes \mathbb{R}^N, \, 0 \le k \le n-1.$$
 ($k = n-1 \simeq$ Sobolev embedding)

$$d^{st}\left(\mathsf{a}(x) \left| du
ight|^{p-2} du
ight) = f \qquad (d,d^{st} ext{ componentwise })$$

- k = 0, N = 1 *p*-Laplacian equation.
- $k = 0, N \ge 2$ *p*-Laplacian system.
- $1 \le k \le n-1$; $N \ge 1$ not elliptic! (in the strict sense) u is a solution $\Rightarrow u + \phi$ is a solution for any closed form ϕ , (i.e $d\phi = 0$) \Rightarrow The kernel is infinite dimensional.

Analogue for vector-valued form

$$u, f: \mathbb{R}^n o \Lambda^k \mathbb{R}^n \otimes \mathbb{R}^N, \, 0 \le k \le n-1.$$
 ($k = n-1 \simeq$ Sobolev embedding)

$$d^{st}\left(\mathsf{a}(\mathsf{x}) \left| \mathsf{d} u
ight|^{p-2} \mathsf{d} u
ight) = f \qquad (\mathsf{d}, \mathsf{d}^{st} ext{ componentwise })$$

- k = 0, N = 1 *p*-Laplacian equation.
- $k = 0, N \ge 2$ *p*-Laplacian system.
- 1 ≤ k ≤ n − 1; N ≥ 1 not elliptic! (in the strict sense) *u* is a solution ⇒ *u* + φ is a solution for any closed form φ, (i.e dφ = 0) ⇒ The kernel is infinite dimensional. However, elliptic complex structure — d*f = 0 is a necessary condition since d* ∘ d* = 0. Thus, elliptic modulo the kernel.

Regularity results

Standing assumptions:

- $n \ge 2, N \ge 1, 1$
- $\Omega \subset \mathbb{R}^n$ open, bounded, ($\mathcal{H}^k_T(\Omega) = \{0\}$.)
- $a: \Omega \to [\gamma, L]$ with $0 < \gamma \le L < \infty$,
- $d^*f = 0$ in Ω in the sense of distributions,
- $u \in W^{1,p}_{loc}\left(\Omega; \Lambda^k \mathbb{R}^n \otimes \mathbb{R}^N\right)$ is a local solution to

$$d^*\left(a(x)\left|du\right|^{p-2}du\right)=f$$
 in Ω .

Regularity results

Standing assumptions:

- $n \ge 2, N \ge 1, 1$
- $\Omega \subset \mathbb{R}^n$ open, bounded, ($\mathcal{H}^k_T(\Omega) = \{0\}$.)
- $a: \Omega \to [\gamma, L]$ with $0 < \gamma \le L < \infty$,
- $d^*f = 0$ in Ω in the sense of distributions,
- $u \in W^{1,p}_{loc}\left(\Omega; \Lambda^k \mathbb{R}^n \otimes \mathbb{R}^N\right)$ is a local solution to

$$d^*\left(a(x)\left|du\right|^{p-2}du\right)=f$$
 in Ω .

Theorem (Stein theorem for forms (S., Calc. Var. PDE 2019, [10])) If a is Dini continuous and $f \in L_{loc}^{(n,1)}(\Omega; \Lambda^k \mathbb{R}^n \otimes \mathbb{R}^N)$, then du is continuous in Ω and ∇u is locally VMO modulo a closed (exact) form.

Campanato estimates for the gradient for $p \ge 2$

$$d^*\left(a(x)\left|du\right|^{p-2}du\right) = d^*F \qquad \text{in }\Omega. \tag{1}$$

Let $p \ge 2$, and let β is the Hölder exponent for V(dv) for the homogeneous constant coefficient system and let $a \in C_{loc}^{0,\alpha}(\Omega)$ and $0 \le \lambda < \min\{n + 2\alpha, n + 2\beta\}$.

Theorem (Campanato estimate (S., Calc. Var. PDE 2019, [10]))

$$F \in \mathcal{L}_{loc}^{p',\lambda} \Rightarrow \nabla u \in \mathcal{L}_{loc}^{2,\frac{np-2n+2\lambda}{p}}$$
, modulo an closed (exact) form.

This implies, modulo an closed (exact) form, we have

•
$$f \in L^q_{loc}$$
 for some $q > n \Rightarrow u \in C^{1,\theta}_{loc}$ for some $0 < \theta < 1$.

•
$$f \in L_{loc}^n \Rightarrow \nabla u$$
 is locally VMO.

•
$$f \in L_{loc}^{(n,\infty)} \Rightarrow \nabla u$$
 is locally *BMO*.

This generalizes **DiBenedetto-Manfredi**, Amer. J. Math. 1993 [3].

Campanato estimates for the gradient for $p \ge 2$

$$d^*\left(a(x)\left|du\right|^{p-2}du\right) = d^*F \qquad \text{in }\Omega. \tag{1}$$

Let $p \ge 2$, and let β is the Hölder exponent for V(dv) for the homogeneous constant coefficient system and let $a \in C^{0,\alpha}_{loc}(\Omega)$ and $0 \le \lambda < \min\{n + 2\alpha, n + 2\beta\}$.

Theorem (Campanato estimate (S., Calc. Var. PDE 2019, [10]))

$$F \in \mathcal{L}_{loc}^{p',\lambda} \Rightarrow \nabla u \in \mathcal{L}_{loc}^{2,\frac{np-2n+2\lambda}{p}}$$
, modulo an closed (exact) form.

This implies, modulo an closed (exact) form, we have

•
$$f \in L^q_{loc}$$
 for some $q > n \Rightarrow u \in C^{1,\theta}_{loc}$ for some $0 < \theta < 1$.

•
$$f \in L^n_{loc} \Rightarrow \nabla u$$
 is locally VMO.

•
$$f \in L^{(n,\infty)}_{loc} \Rightarrow \nabla u$$
 is locally *BMO*.

This generalizes **DiBenedetto-Manfredi**, Amer. J. Math. **1993** [3]. See also Diening-Kaplický-Schwarzacher, Nonlinear Anal. 2012 [4] and Breit-Cianchi-Diening-Kuusi-Schwarzacher, J. Math. Pures Appl. 2018 [2].

Vector fields in dimension three

 $\Omega \subset \mathbb{R}^3$ is open, bounded, contractible, $1 , <math>a : \Omega \to [\gamma, L]$ with $0 < \gamma \leq L < \infty$. Let div f = 0 in Ω and $u \in W^{1,p}_{loc}(\Omega; \mathbb{R}^3)$ is a solution to

$$\operatorname{curl}\left(\mathsf{a}(x) \left| \operatorname{curl} u \right|^{p-2} \operatorname{curl} u \right) = f \qquad ext{ in } \Omega.$$

Theorem (Stein theorem for vector fields in dimension three)

If a is Dini continuous and $f \in L^{(3,1)}_{loc}(\Omega; \mathbb{R}^3)$, then curl u is continuous in Ω .

Theorem (Campanato estimate for vector fields in dimension three) If $p \ge 2$, $a \in C_{loc}^{0,\alpha}(\Omega)$, then modulo a gradient field, we have • $f \in L_{loc}^{(3,\infty)}(\Omega; \mathbb{R}^3) \Rightarrow \nabla u \in BMO_{loc}(\Omega; \mathbb{R}^3 \otimes \mathbb{R}^3)$, • $f \in L_{loc}^3(\Omega; \mathbb{R}^3) \Rightarrow \nabla u \in VMO_{loc}(\Omega; \mathbb{R}^3 \otimes \mathbb{R}^3)$, • $f \in L_{loc}^4(\Omega; \mathbb{R}^3)$ for some $q > 3 \Rightarrow u \in C_{loc}^{1,\beta}(\Omega; \mathbb{R}^3)$.

Comparison for inhomogeneous system

$$u \in W^{1,p}_{loc}\left(\mathbb{R}^{n};\mathbb{R}^{N}
ight)$$
 solves

$$\operatorname{div}\left(a(x)\left|Du\right|^{p-2}Du\right)=f.$$
(2)

Pick a point $x_0 \in \mathbb{R}^n$ and we first solve (unique solution exists)

$$\begin{cases} \operatorname{div}\left(a(x)\left|Dw\right|^{p-2}Dw\right) = 0 & \text{ in } B_{R}(x_{0}) \\ w = u & \text{ on } \partial B_{R}(x_{0}). \end{cases}$$
(3)

Then we solve (unique solution exists)

$$\begin{cases} \operatorname{div}\left(a(x_{0}) |Dv|^{p-2} Dv\right) = 0 & \text{ in } B_{R/2}(x_{0}) \\ v = w & \text{ on } \partial B_{R/2}(x_{0}). \end{cases}$$
(4)

Comparison for inhomogeneous system

$$u-w\in W^{1,p}_0\left(B_R(x_0);\mathbb{R}^N
ight)+$$
 weak formulations of (2) and (3) \Rightarrow

$$\int_{B_R(x_0)} a(x) \left\langle |Du|^{p-2} Du - |Dw|^{p-2} Dw; u - w \right\rangle = \int_{B_R(x_0)} \left\langle f; u - w \right\rangle.$$
(5)

$$\int_{B_{R}(x_{0})} |Du - Dw|^{p} \leq \mathsf{LHS} \quad \text{by monotonicity } (p \geq 2)$$
$$|\mathsf{RHS}| \leq \left(\int_{B_{R}(x_{0})} |f|^{(p^{*})'} \right)^{\frac{1}{(p^{*})'}} R\left(\int_{B_{R}(x_{0})} |Du - Dw|^{p} \right)^{\frac{1}{p}}, \qquad (*)$$

by Hölder and Sobolev-Poincaré.

Trouble for forms

Naive analogy can not work.

$$\begin{cases} d^* \left(a(x) \left| dw \right|^{p-2} dw \right) = 0 & \text{ in } B_R(x_0) \\ w = u & \text{ on } \partial B_R(x_0). \end{cases}$$

- No unique solution .
- $||du dw||_{L^p}$ does not control any of the following norms

$$\|\nabla u - \nabla w\|_{L^{p}}, \|u - w\|_{W^{1,p}}, \|u - w\|_{L^{p^{*}}}.$$

Gauge fixing

We need to quotient out the kernel and restore ellipticity .

First heuristic idea

The system

$$d^*\left(a(x)\left|du\right|^{p-2}du\right) = f \tag{E1}$$

is (locally) equivalent to

$$d^*\left(\mathsf{a}(x) \left| \mathsf{d} u
ight|^{p-2} \mathsf{d} u
ight) = f$$
 and $d^* u = 0.$ (

Picks out only one, the unique 'nicest' representative from each class $\{u + \phi : \phi \text{ closed }\} \simeq$ Projection onto the quotient by the kernel.

E2)

The space $W_{d^*,T}^{d,p}$

$$W_0^{1,p}$$
 is **not** the correct space. $W_{d^*,T}^{1,p} = W_{d^*,T}^{d,p}$ is!

$$W^{d,p}_{d^*,T}\left(B_R(x_0);\Lambda^k\mathbb{R}^n\otimes\mathbb{R}^N\right)$$

= $\left\{u\in L^p: du\in L^p, d^*u=0 \text{ in } B_R(x_0), \iota^*_{\partial B_R(x_0)}u=0 \text{ on } \partial B_R(x_0)\right\}$
= $\overline{C^{\infty}_c\left(B_R(x_0);\Lambda^k\mathbb{R}^n\otimes\mathbb{R}^N\right)\cap\operatorname{Ker} d^*}^{\|\cdot\|_{W^{d,p}}}$

Technical gain of gauge fixing

The system (E2) admits an existence theory and a weak formulation in $W^{d,p}_{d^*,T}$. Look for $u \in W^{d,p}_{d^*,T}(B_R(x_0); \Lambda^k \mathbb{R}^n \otimes \mathbb{R}^N)$ satisfying

$$\int_{B_R(x_0)} \left\langle \mathsf{a}(x) \left| \mathsf{d} u \right|^{p-2} \mathsf{d} u; \mathsf{d} \phi \right\rangle = \int_{B_R(x_0)} \left\langle f; \phi \right\rangle \quad \text{ for all } \phi \in W^{d,p}_{d^*,T}$$

Comparison systems

Second idea

For comparison, use the systems

$$\begin{cases} d^* \left(a(x) \left| dw \right|^{p-2} dw \right) = 0 & \text{in } B_R(x_0) \\ d^* w = d^* u & \text{in } B_R(x_0) \\ \iota^*_{\partial B_R(x_0)} w = \iota^*_{\partial B_R(x_0)} u & \text{on } \partial B_R(x_0) \end{cases}$$

 and

$$\begin{cases} d^* \left(a(x_0) \left| dv \right|^{p-2} dv \right) = 0 & \text{ in } B_{R/2}(x_0) \\ d^* v = d^* w & \text{ in } B_{R/2}(x_0) \\ \iota^*_{\partial B_R(x_0)} v = \iota^*_{\partial B_{R/2}(x_0)} w & \text{ on } \partial B_{R/2}(x_0) \end{cases}$$

Existence and uniqueness for comparison systems

- Existence and uniqueness of solutions. (modulo cohomology).
- Solutions are unique minimizers for

$$\mathsf{Minimize} \qquad m = \inf \left\{ \frac{1}{p} \int_{B_R} \mathsf{a}(x) \, |\mathsf{d} u|^p : u \in u_0 + W^{d,p}_{d^*,T} \right\}.$$

Clearly, the weak formulations in $W_{d^*,T}^{d,p}$ is valid. Minimization on $u_0 + W_0^{1,p}$ is possible, intimately related. **Bandyopadhyay-Dacorogna-S., JEMS 2015 [1]**(N = 1); **S., Adv. Calc. Var 2019 [9]** ($N \ge 2$). Allows one to work with the naive analogy for the case $f = d^*F$ and obtain analogues of Diening-Kaplický-Schwarzacher, Nonlinear Anal. 2012 [4] and **Breit-Cianchi-Diening-Kuusi-Schwarzacher, J. Math. Pures Appl. 2018** [2] by deriving estimate for $A(du) := |du|^{p-2} du$.

Existence and uniqueness for comparison systems

- Existence and uniqueness of solutions. (modulo cohomology).
- Solutions are unique minimizers for

$$\mathsf{Minimize} \qquad m = \inf \left\{ \frac{1}{\rho} \int_{B_R} \mathsf{a}(x) \, |\mathsf{d} u|^p : u \in u_0 + W^{d,p}_{d^*,T} \right\}.$$

Clearly, the weak formulations in $W_{d^*,T}^{d,p}$ is valid.

Minimization on $u_0 + W_0^{1,p}$ is possible, intimately related. Bandyopadhyay-Dacorogna-S., JEMS 2015 [1](N = 1);

S., Adv. Calc. Var 2019 [9] $(N \ge 2)$.

Allows one to work with the naive analogy for the case $f = d^*F$ and obtain analogues of **Diening-Kaplický-Schwarzacher**, **Nonlinear Anal. 2012** [4] and **Breit-Cianchi-Diening-Kuusi-Schwarzacher**, **J. Math. Pures Appl. 2018** [2] by deriving estimate for $A(du) := |du|^{p-2} du$. The remark about forms in [4] missed that there is an issue with existence when $1 \le k \le n-1$. Existence for such systems was settled in **S. PhD thesis**, **2016** [8] and published in [1] and [9] $W^{d,p}_{d^*,T}$ again

Gaffney inequality

L^p and Campanato estimates for the linear elliptic system

$$du = f \quad \text{and} \quad d^*u = g \qquad \text{in } B_R,$$
$$\iota_{\partial B_R}^* u = \iota_{\partial B_R}^* u_0 \qquad \text{on } \partial B_R.$$

$$\|\nabla u\|_{L^{p}(B_{R})} \leq C\left(\|f\|_{L^{p}(B_{R})} + \|g\|_{L^{p}(B_{R})} + \|u_{0}\|_{W^{1-\frac{1}{p},p}(\partial B_{R})}\right)$$

 B_R has trivial cohomology. $W^{d,p}_{d^*,T} = W^{1,p}_{d^*,T}$.

Poincaré-Sobolev inequality

If
$$u \in W^{d,p}_{d^*,T}\left(\mathcal{B}_R; \Lambda^k \mathbb{R}^n \otimes \mathbb{R}^N\right)$$
, $1 and $p^* = \frac{np}{n-p}$, then$

$$\left(\int_{B_R} \left|u\right|^{p^*}\right)^{\frac{1}{p^*}} \leq cR\left(\int_{B_R} \left|du\right|^p\right)^{\frac{1}{p}}.$$

Campanato estimate for $p \ge 2$

• Basically linear estimates for the nonlinear quantity

$$V(du) = |du|^{\frac{p-2}{2}} du$$
, Also possible using $A(du) = |du|^{p-2} du$.

• Comparison estimates

$$\begin{split} \int_{B_R} |V(du) - V(dw)|^2 &\leq c \int_{B_R} \left|F - (F)_{B_R}\right|^{\frac{p}{p-1}} .\\ \int_{B_R} |V(dv) - V(dw)|^2 &\leq c \left[\omega\left(R\right)\right]^2 \int_{B_R} |V(dw)|^2 .\\ \int_{B_\rho} \left|V(dv) - (V(dv))_{B_\rho}\right|^2 &\leq c \left(\frac{\rho}{R}\right)^{n+2\beta_2} \int_{B_R} \left|V(dv) - (V(dv))_{B_R}\right|^2 . \end{split}$$

• From V(du) to du

$$V(du) \in \mathcal{L}^{2,\lambda} \Rightarrow du \in \mathcal{L}^{p,\lambda} \Rightarrow du \in \mathcal{L}^{2,rac{np-2n+2\lambda}{p}}$$

• From du to $\nabla u : du \in \mathcal{L}^{2, \frac{np-2n+2\lambda}{p}}$ and $d^*u = 0 \Rightarrow \nabla u \in \mathcal{L}^{2, \frac{np-2n+2\lambda}{p}}$.

Homogeneous system with Dini coefficients for $p \ge 2$

To prove the Stein theorem result, as an intermediate step we need to prove the theorem for $p \ge 2$ and f = 0, i.e. for the system

$$d^*\left(a(x)\left|dw\right|^{p-2}dw\right)=0$$
 in Ω .

Basic strategy

• First prove for any ball $B_R \subset \subset \Omega$, the L^{∞} estimate,

$$\sup_{B_{R/2}} |dw| \leq c \int_{B_R} |dw|.$$

 $\bullet\,$ Then using the L^∞ bound to show that the continuous maps

$$\alpha_i(x) := \int_{B_{R_i}(x)} dw$$

converge uniformly as $i \to \infty$ on any compact subset $K \subset \Omega$. Thus, the limit is a continuous map which agrees a.e. with dw. Hence dw is continuous.

Swarnendu Sil (ETHZ)

Pointwise estimate for homogeneous system with Dini coefficients for $p \ge 2$

• Comparison estimates in shrinking ball $B_i := B_{R_i}$ with $R_i := \sigma^i R$.

$$\displaystyle{ \int_{B_i} |V(dv_i) - V(dw)|^2 \leq c_4 \left[\omega\left(R_i
ight)
ight]^2 \int_{B_i} |V(dw)|^2 } \,.$$

• Set
$$\lambda^{\frac{p}{2}} := H_1\left(\int_{B_R} |V(dw)|^2\right)^{\frac{1}{2}}$$
 and choose H_1 large, R and σ small.

• Excess decay: Let
$$E_2(V(dw), B_i) := \left(\int_{B_i} \left| V(dw) - (V(dw))_{B_i} \right|^2 \right)^{\frac{1}{2}}$$

$$\int_{B_i} |V(dw)|^2 \leq \lambda^p \Rightarrow E_2(V(dw), B_{i+1}) \leq \frac{1}{4} E_2(V(dw), B_i) + c\lambda^{\frac{p}{2}} \omega(R_i).$$

- Prove by induction that $|(V(dw))_{B_i}| + E_2(V(dw), B_i) \le \lambda^{\frac{p}{2}}$ for all i.
- $|dw(x)| \leq \liminf_{i \to \infty} |(dw)_{B_i}| \leq \left(\oint_{B_i} |V(dw)| \right)^{\frac{2}{p}} \leq \lambda$, for any Lebesgue point x.

Stein theorem

Basic strategy

 First prove for any ball B_R ⊂⊂ Ω and every Lebesgue point x of du, the pointwise estimate,

$$|du(x)| \leq c \left(\int_{B_R} |du|^s \right)^{\frac{1}{s}} + \|f\|_{L^{(n,1)}}^{\frac{1}{s-1}},$$

where s = p' if p > 2 and s = p if 1 .

• Then using the L^{∞} bound to show that the continuous maps

$$\alpha_i(x) := \int_{B_{R_i}(x)} du$$

converge uniformly as $i \to \infty$ on any compact subset $K \subset \Omega$. Thus, the limit is a continuous map which agrees a.e. with du. Hence du is continuous.

Considerably more involved estimates. However, with our comparison systems and our Poincaré-Sobolev inequality, becomes exactly analogous to the k = 0 case.

Swarnendu Sil (ETHZ)

Next...

Moral of the story so far

Estimates for ∇u for the inhomogeneous *p*-Laplacian type systems \rightsquigarrow Analogous estimates for *du* for the inhomogeneous systems for forms .

How far is this the general picture? only for du or valid for the full gradient?

Possible extensions

• Campanato estimate for the gradient for 1 ?

Next...

Moral of the story so far

Estimates for ∇u for the inhomogeneous *p*-Laplacian type systems \rightsquigarrow Analogous estimates for *du* for the inhomogeneous systems for forms.

How far is this the general picture? only for du or valid for the full gradient?

Possible extensions

Campanato estimate for the gradient for 1
 Estimate for A(du) is possible by following the work by Diening and collaborators in [4] and [2] with the existence issue fixed by [1] and [9]. But in this range of p, those estimates does not imply estimates for du or ∇u.

Next...

Moral of the story so far

Estimates for ∇u for the inhomogeneous *p*-Laplacian type systems \rightsquigarrow Analogous estimates for *du* for the inhomogeneous systems for forms.

How far is this the general picture? only for du or valid for the full gradient?

Possible extensions

- Campanato estimate for the gradient for 1
 Estimate for A(du) is possible by following the work by Diening and collaborators in [4] and [2] with the existence issue fixed by [1] and [9]. But in this range of p, those estimates does not imply estimates for du or ∇u.
- linear and nonlinear potential estimates? (Typically Riesz potential bounds for the gradient and Wolff potential bounds for the form). Work in progress. Note that Morrey estimates i.e. a Nonlinear Adams theorem would be implied by potential estimates for the gradient.

Gradient estimates and nonlinear Sobolev embedding

An **interesting** (and probably difficult) question: For u coclosed ($d^*u = 0$), if

$$d^*\left(|du|^{p-2}du\right)\in L^{(n,1)}_{loc}\qquad \qquad \Rightarrow ?\quad u\in C^1_{loc}?\ u\in C^{0,1}_{loc}?$$

Positive answer to the first question yields an improved pointwise nonlinear Stein theorem for scalar functions!

$$abla \left(|v|^{p-2}v
ight) \in L^{(n,1)}_{loc} \Rightarrow v$$
 is locally the Laplacian of a $C^2(C^{1,1})$ function ?

Note that not every continuous function is the Laplacian of a C^2 function. For k = n - 1, the system is

$$\nabla \left(|\operatorname{div} u|^{p-2} \operatorname{div} u \right) \in L^{(n,1)}_{loc}$$

Write

$$v = \Delta \psi = \operatorname{div} (\nabla \psi)$$
 and $u = \nabla \psi$.

Then $u \in C^1_{loc}(C^{0,1}_{loc}) \Rightarrow \psi \in C^2_{loc}(C^{1,1}_{loc}).$

Gradient estimates and nonlinear Sobolev embedding

An **interesting** (and probably difficult) question: For u coclosed ($d^*u = 0$), if

$$d^*\left(|du|^{p-2}du\right)\in L^{(n,1)}_{loc}\qquad \qquad \Rightarrow ?\quad u\in C^1_{loc}?\ u\in C^{0,1}_{loc}?$$

Positive answer to the first question yields an improved pointwise nonlinear Stein theorem for scalar functions!

$$abla \left(|
u|^{p-2} v
ight) \in L^{(n,1)}_{loc} \Rightarrow v$$
 is locally the Laplacian of a $\mathcal{C}^2(\mathcal{C}^{1,1})$ function ?

Note that not every continuous function is the Laplacian of a C^2 function. For k = n - 1, the system is

$$\nabla \left(|\operatorname{div} u|^{p-2} \operatorname{div} u \right) \in L^{(n,1)}_{loc}$$

Write

.

$$v = \Delta \psi = \operatorname{div} (\nabla \psi)$$
 and $u = \nabla \psi$.

Then $u \in C^1_{loc}(C^{0,1}_{loc}) \Rightarrow \psi \in C^2_{loc}(C^{1,1}_{loc})$. Note that p = 2 case is implied by Stein theorem and CZ estimates.

References I

BANDYOPADHYAY, S., DACOROGNA, B., AND SIL, S. Calculus of variations with differential forms. *J. Eur. Math. Soc. (JEMS)* 17, 4 (2015), 1009–1039.

 BREIT, D., CIANCHI, A., DIENING, L., KUUSI, T., AND SCHWARZACHER, S.
 Pointwise Calderón-Zygmund gradient estimates for the *p*-Laplace system. J. Math. Pures Appl. (9) 114 (2018), 146–190.

DIBENEDETTO, E., AND MANFREDI, J.

On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems.

Amer. J. Math. 115, 5 (1993), 1107–1134.

DIENING, L., KAPLICKÝ, P., AND SCHWARZACHER, S.
 BMO estimates for the *p*-Laplacian.
 Nonlinear Anal. 75, 2 (2012), 637–650.

References II

HAMBURGER, C.

Regularity of differential forms minimizing degenerate elliptic functionals. *J. Reine Angew. Math. 431* (1992), 7–64.

KUUSI, T., AND MINGIONE, G. Linear potentials in nonlinear potential theory. Arch. Ration. Mech. Anal. 207, 1 (2013), 215–246.

Kuusi, T., and Mingione, G.

A nonlinear Stein theorem. Calc. Var. Partial Differential Equations 51, 1-2 (2014), 45–86.

SIL, S.

Calculus of Variations for Differential Forms, PhD Thesis. EPFL, Thesis No. 7060 (2016).

 \blacksquare SIL, S.

Calculus of variations: A differential form approach. *Adv. Calc. Var. 12*, 1 (2019), 57–84.

References III

SIL, S.

Nonlinear Stein theorem for differential forms.

Calc. Var. Partial Differential Equations 58, 4 (2019), Paper No. 154.

STEIN, E. M.

Editor's note: the differentiability of functions in \mathbb{R}^n . Ann. of Math. (2) 113, 2 (1981), 383–385.

UHLENBECK, K.

Regularity for a class of non-linear elliptic systems. *Acta Math. 138*, 3-4 (1977), 219–240.

Thank you *Questions?*