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The purpose of this note is to spell out in detail a piece of argument employed
in the proof of the characterization theorem for the quasiaffine functions for
calculus of variations for several differential forms (Theorem 2 here).

The theorem was first obtained in my PhD Thesis (cf. Theorem 4.12 in
[4]) and also appeared as Theorem 3.9 in [3]. Unfortunately, this last piece
of argument was not spelled out explicitly enough in the published versions of
either of them. Although it is basically an iteration of the exact same argument
employed in the proof of Theorem 3.3 in [2], still at present I think (contrary to
my younger self) the details are not obvious enough to warrant skipping. Here
it is written in a self-contained manner.

Convexity notions and basic Properties

The definitions of different notions of vectorial ext. convexity and affinity can
be found in [3], [4]. We recall their basic relationships.

Theorem 1 Let f : Λk → R. Then

fconvex⇒ f vectorially ext. polyconvex ⇒ f vectorially ext. quasiconvex

⇒ f vectorially ext. one convex.

Moreover if f : Λk (Rn) → R is vectorially ext. one convex, then f is locally
Lipschitz.

Proof can be found in [3], [4].

The quasiaffine case

We now prove the basic characterization theorem for vectorially ext. quasiaffine
functions. In the special case when ki = 1 for all 1 ≤ i ≤ m, this immediately
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implies classical theorem of Ball [1] with a new proof. In a sense, this theorem
also ‘explains’ the appearance of determinants and adjugates in the classical
theorem. Determinants and adjugates appear as they are precisely the ‘wedge
products’ in the classical case.

Theorem 2 Let f : Λk → R. The following statements are then equivalent.

(i) f is vectorially ext. polyaffine.

(ii) f is vectorially ext. quasiaffine.

(iii) f is vectorially ext. one affine.

(iv) There exist cα ∈ Λ|kα|(Rn), for every α = (α1, . . . , αm) such that

0 ≤ αi ≤
[
n
ki

]
for all 1 ≤ i ≤ m and 0 ≤ |kα| ≤ n, such that for every ξ ∈ Λk,

f (ξ) =
∑
α,

0≤|kα|≤n

〈cα; ξα〉 .

Proof (i) ⇒ (ii) ⇒ (iii) follows from Theorem 1. (iv) ⇒ (i) is immediate
from the definition of vectorial ext. polyconvexity. So we only need to show
(iii)⇒ (iv).

We show this by induction on m. Clearly, for m = 1, this is just the charac-
terization theorem for ext. one affine functions, given in theorem 3.3 in [2]. We
assume the result to be true for m ≤ p− 1 and show it for m = p. Now since f
is vectorially ext. one affine, it is separately ext. one affine and using ext. one
affinity with respect to ξp, keeping the other variables fixed, we obtain,

f (ξ) =

[ nkp ]∑
s=1

〈cs(ξ1, . . . , ξp−1); ξsp〉,

where for each 1 ≤ s ≤ [ nkp ], the functions cs :

p−1∏
i=1

Λki → Λskp are such that

the map (ξ1, . . . , ξp−1) 7→ f (ξ1, . . . , ξp−1, ξp) is vectorially ext. one affine for
any ξp ∈ Λkp . Arguing by degree of homogeneity, this implies that for each 1 ≤
s ≤ [ nkp ], every component cIS is vectorially ext. one affine, i.e (ξ1, . . . , ξp−1) 7→
cIs(ξ1, . . . , ξp−1) is vectorially ext. one affine for any I ∈ T skp . Applying the
induction hypothesis to each of these components, multiplying out and collecting
terms of according to the degree of homogeneity, we obtain,

f (ξ) =
∑
α,

0≤|kα|≤n

fα (ξ) ,

where

fα (ξ) =
∑

I∈T kpαp

〈
cα,I ; ξ

α1
1 ∧ . . . ∧ ξ

αp−1

p−1
〉 (
ξαpp
)I
,
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and cα,I ∈ T (k1α1+...+kp−1αp−1) is a constant form for each I ∈ T kpαp .
Now we just need to show that fα (ξ) = 〈cα; ξα〉 , for some constant form

cα ∈ Λ|kα|(Rn). This is done by the same arguments that were used in the proof
of Theorem 3.3 in [2]. Again by a degree of homogeneity argument ( just notice
that the map t 7→ fα (λ1ξ1 + tλ1a ∧ b1, . . . , λpξp + tλpa ∧ bp) must be affine in
t for all choices of λ1, . . . , λp ∈ R) , it is clear that each fα must be vectorially
ext. quasiaffine themselves. Thus it is enough to restrict our attention to a
fixed, but arbitrary admissible α. Note that we can write

〈cα; ξα〉
=
〈
ξαpp ;

(
ξα1
1 ∧ . . . ∧ ξ

αp−1

p−1
)
ycα

〉
=

∑
I∈T kpαp

(
ξαpp
)I ((

ξα1
1 ∧ . . . ∧ ξ

αp−1

p−1
)
ycα

)I
=

∑
I∈T kpαp

(
ξαpp
)I ∑

J∈T

(
p−1∑
i=1

kiαi

)
(
ξα1
1 ∧ . . . ∧ ξ

αp−1

p−1
)J
c[IJ]α (−1)kpαp sgn[I, J ]. (1)

Finding the strange looking formula for the sign is rather easy, illustrating how
efficient our notations really are. Indeed, the correct sign the obviously the
sign needed to make the expression

(
eJye[IJ]

)
equal to eI , i.e the sign of the

expression
〈
eJye[IJ]; eI

〉
. But this is equal to〈

eJye[IJ]; eI
〉

= (−1)kpαp
〈
e[IJ]; eI ∧ eJ

〉
(since I ∈ T kpαp),

= (−1)kpαp
〈
e[IJ]; sgn[I, J ]e[IJ]

〉
= (−1)kpαp sgn[I, J ].

On the other hand, we have,

fα (ξ) =
∑

I∈T kpαp

(
ξαpp
)I ∑

J∈T

(
p−1∑
i=1

kiαi

)
(
ξα1
1 ∧ . . . ∧ ξ

αp−1

p−1
)J

(cα,I)
J
. (2)

So from (1) and (2), we see that to prove the theorem all we need to show
is that

(cα,I)
J

= 0, (3)

whenever I and J has an index in common and

sgn[I, J ] (cα,I)
J

= sgn[Ĩ , J̃ ]
(
cα,Ĩ

)J̃
, (4)

for any choice of I, Ĩ ∈ T kpαp , J, J̃ ∈ T

(
p−1∑
i=1

kiαi

)
such that I ∩ J = ∅ = Ĩ ∩ J̃

and I ∪ J = Ĩ ∪ J̃ .
Now we show (3). Fix I, J such that i is a common index between I and

J. Since I ∈ T kpαp , we split I into αp number of multiindices I1, . . . , Iαp , each
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containing kp indices in a such a way such that i ∈ I1. Now choose ξp =

αp∑
l=2

eIl .

Note that this implies the only term containing t in(
ξp + tei ∧ sgn[i, I1

î
]eI

1
î

)αp
is teI ,

upto multiplication by a positive constant. Similarly since J ∈ T

(
p−1∑
i=1

kiαi

)
, we

split J into p−1 blocks J1, . . . , Jp−1 such that Jl containes klαl indices for each
1 ≤ l ≤ p− 1. Once again, suppose i ∈ J1. Now for each 1 ≤ l ≤ p− 1, we split
Jl into αl multiindices J1

l , . . . , J
αl
l , each containing kl indices and assume that

i ∈ J1
1 . Now we chose

ξl =

αl∑
r=1

eJ
r
l for 2 ≤ l ≤ p− 1 and ξ1 =

α1∑
r=2

eJ
r
1 .

Note that this implies the only term containing t in(
ξ1 + tei ∧ sgn[i,

(
J1
1

)̂
i
]e(J

1
1)
î

)α1

=
(
ξ1 + teJ

1
1

)α1

is teJ
1

,

upto multiplication by a positive constant. Thus the only term quadratic in t
in the expression of

fα

(
ξ1 + tei ∧ sgn[i,

(
J1
1

)̂
i
]e(J

1
1)
î , ξ2, . . . , ξp−1, ξp + tei ∧ sgn[i, I1

î
]eI

1
î

)
is

t2 (cα,I)
J
, upto multiplication by a positive constant.

Since fα is vectorially ext. one affine, this proves (3).

Now fix I, J such that I ∩ J = ∅ and show (4). Since the permutation of

the indices mapping the string of indices (I, J) to the string (Ĩ , J̃) can always
be written as a product of 1-flips , we see it is enough to prove (4) for a 1-flip
(see Notations) i.e to show

(cα,I)
J

= −
(
cα,Ĩ

)J̃
, (5)

when Ĩ , J̃ is obtained from I, J by a 1-flip, i.e shifting one index of I to J and
one index of J to I.

We now show (5) by using the fact that fα is vectorially ext. quasiaffine.

Let i ∈ I and j ∈ J be the indices that has been flipped to obtain Ĩ and
J̃ . In our notations, Ĩ = [jÎi] and J̃ = [iJĵ ]. Once again, we split I into αp
number of multiindices I1, . . . , Iαp , each containing kp indices in a such a way
such that i ∈ I1. Also, we split J into into p − 1 blocks J1, . . . , Jp−1 such that
Jl containes klαl indices for each 1 ≤ l ≤ p − 1, such that j ∈ J1 and then for
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each 1 ≤ l ≤ p− 1, we split Jl into αl multiindices J1
l , . . . , J

αl
l , each containing

kl indices such that we have j ∈ J1
1 . Now we chose

ξ1 =

α1∑
r=2

eJ
r
1 , ξp =

αp∑
l=2

eIl

and ξl =

αl∑
r=1

eJ
r
l for 2 ≤ l ≤ p− 1.

Now if we chose 1-forms a = ei, b = ej , (kp−1)-forms Ap = sgn[i, I1
î
]eI

1
î , Bp = 0,

(k1 − 1)-forms A1 = 0 and B1 = sgn[j,
(
J1
1

)
ĵ
]e

(J1
1)
ĵ , then it is easy to see that

we have

(cα,I)
J

= fα (ξ1 + a ∧A1 + b ∧B1, ξ2, . . . , ξp−1, ξp + a ∧Ap + b ∧Bp)

and(
cα,Ĩ

)J̃
= fα (ξ1 + a ∧B1 + b ∧A1, ξ2, . . . , ξp−1, ξp + a ∧Bp + b ∧Ap) .

Choosing Ai, Bi = 0 ∈ T ki−1 for all 2 ≤ i ≤ p − 1 and using Lemma 3 and
noting the fact that all other terms of (6) are zero, we immediately obtain the
claim.

The following lemma is an analogue of Corollary 3.2 in [2] (see also Lemma
3.17 and Corollary 3.18 in [4]) and is proved in the same way.

Lemma 3 Let f : Λk → R be vectorially ext. one affine. Then for every
a, b ∈ Λ1 and every collection of Ai, Bi ∈ T ki−1, 1 ≤ i ≤ m and every ξ ∈ Λk,
we have

[f (ξ1 + a ∧A1 + b ∧B1, . . . , ξm + a ∧Am + b ∧Bm)− f (ξ)]

+ [f (ξ1 + a ∧B1 + b ∧A1, . . . , ξm + a ∧Bm + b ∧Am)− f (ξ)]

= [f (ξ1 + a ∧A1, ξ2, . . . , ξm−1, ξm + a ∧Am)− f (ξ)]

+ [f (ξ1 + b ∧B1, . . . , ξm + b ∧Bm)− f (ξ)]

+ [f (ξ1 + a ∧B1, . . . , ξp + a ∧Bp)− f (ξ)]

+ [f (ξ1 + b ∧A1, . . . , ξp + b ∧Ap)− f (ξ)] .

(6)

Proof We divide the proof in two steps. The first step is analogous to Lemma
3.1 in [2]

Step 1 We first show that

f (ξ1 + a ∧A1 + a ∧B1, . . . , ξm + a ∧Am + a ∧Bm) + f (ξ)

= f (ξ1 + a ∧A1, . . . , ξm + a ∧Am) + f (ξ1 + a ∧B1, . . . , ξm + a ∧Bm) .
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Since f is vectorially ext. one affine, for any t 6= 0, we have,

f (ξ1 + ta ∧A1 + a ∧B1, . . . , ξm + ta ∧Am + a ∧Bm)

= f

(
ξ1 + ta ∧

[
A1 +

1

t
B1

]
, . . . , ξm + ta ∧

[
Am +

1

t
Bm

])
= f (ξ) + t

[
f

(
ξ1 + ta ∧

[
A1 +

1

t
B1

]
, . . . , ξm + ta ∧

[
Am +

1

t
Bm

])
− f (ξ)

]
= f (ξ) + t [f (ξ1 + ta ∧A1, . . . , ξm + ta ∧Am) +−f (ξ)]

+ f (ξ1 + a ∧ [A1 +B1] , . . . , ξm + a ∧ [Am +Bm])

− f (ξ1 + ta ∧A1, . . . , ξm + ta ∧Am) .

Letting t→ 0, we obtain the claim.

Step 2 Now by Step 1, we obtain,

f (ξ1 + a ∧ [A1 +B1] , . . . , ξm + a ∧ [Am +Bm]) + f (ξ)

= f (ξ1 + a ∧A1, . . . , ξm + a ∧Am) + f (ξ1 + a ∧B1, . . . , ξm + a ∧Bm) .

and

f (ξ1 + b ∧ [A1 +B1] , . . . , ξm + b ∧ [Am +Bm]) + f (ξ)

= f (ξ1 + a ∧A1, . . . , ξm + a ∧Am) + f (ξ1 + b ∧B1, . . . , ξm + b ∧Bm) .

But it is easy to see that

f (ξ1 + a ∧ [A1 +B1] + (b− a) ∧B1, . . . , ξm + a ∧ [Am +Bm] + (b− a) ∧Bm)

= f (ξ1 + a ∧A1 + b ∧B1, . . . , ξm + a ∧Am + b ∧Bm)

and

f (ξ1 + a ∧ [A1 +B1] + (b− a) ∧A1, . . . , ξm + a ∧ [Am +Bm] + (b− a) ∧Am)

= f (ξ1 + a ∧B1 + b ∧A1, . . . , ξm + a ∧Bm + b ∧Am)

Now we add the last two identities. Note that by Step 1, the sum of the LHS
of the last two identities is

f (ξ1 + (a+ (b− a)) ∧ [A1 +B1] , . . . , ξm + (a+ (b− a)) ∧ [Am +Bm])

+f (ξ1 + a ∧ [A1 +B1] , . . . , ξm + a ∧ [Am +Bm]) .

This coupled with the first two identities in Step 2 yields the result.

1 Notations

We gather here the notations which we use throughout this note. We reserve
boldface english or greek letters to denote m-tuples of integers, real numbers,
exterior forms etc as explained below.

Let m,n ≥ 1 be integers.
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• ∧, y , 〈 , 〉 and ∗ denote the exterior product, the interior product, the
scalar product and the Hodge star operator , respectively.

• k stands for an m-tuple of integers, k = (k1, . . . , km), where 1 ≤ ki ≤
n for all 1 ≤ i ≤ m, where m ≥ 1 is a positive integer. We write

Λk(Rn) ( or simply Λk) to denote the Cartesian product

m∏
i=1

Λki (Rn),

where Λki (Rn) denotes the vector space of all alternating ki-linear maps
f : Rn × · · · × Rn︸ ︷︷ ︸

ki-times

→ R. For any integer r, we also employ the shorthand

Λk+r to stand for the product

m∏
i=1

Λki+r (Rn) . We denote elements of Λk

by boldface greek letters, except α, which we reserve for multiindices (see
below). For example, we write ξ ∈ Λk to mean ξ = (ξ1, . . . , ξm) is an
m-tuple of exterior forms, with ξi ∈ Λki(Rn) for all 1 ≤ i ≤ m. We also

write |ξ| =

(
m∑
i=1

|ξi|2
) 1

2

. In general, boldface greek letters always mean

an m-tuple of the concerned objects.

• If k is an m-tuple as defined above, we reserve the boldface greek letter
α for a multiindex, i.e an m-tuple of integers (α1, . . . , αm) with 0 ≤ αi ≤[
n
ki

]
for all 1 ≤ i ≤ m. We write |α| and |kα| for the sums

m∑
i=1

αi and

m∑
i=1

kiαi, respectively.

• For any k and α, as defined above, such that 1 ≤ |kα| ≤ n, we write ξα

for the wedge product

ξα1
1 ∧ . . . ∧ ξαmm = ξ1 ∧ · · · ∧ ξ1︸ ︷︷ ︸

α1-times

∧ . . . ∧ ξm ∧ · · · ∧ ξm︸ ︷︷ ︸
αm-times

∈ Λ|kα|(Rn).

Clearly, if αi = 0 for some 1 ≤ i ≤ m, ξi is absent from the product.

• Let k and α be as defined above. Then for any ξ ∈ Λk and for any
integer 1 ≤ s ≤ n, Ts(ξ) stands for the vector with components ξα, where
α varies over all possible choices such that |α| = s, as long as there is at
least one such non-trivial wedge power. As an example, if m = 3, then we
immediately see that

T1(ξ) = (ξ1, ξ2, ξ3) ,

T2(ξ) =
(
ξ21 , ξ1 ∧ ξ2, ξ1 ∧ ξ3, ξ22 , ξ2 ∧ ξ3, ξ23

)
etc.

N(k) stands for the largest integer s for which there is at least one such
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non-trivial wedge power, i.e

N(k) = max {s ∈ N : ∃α with |α | = s such that ξα 6= 0

for some ξ ∈ Λk
}
.

T (ξ) stands for the vector T (ξ) =
(
T1(ξ), . . . , TN(k)(ξ)

)
, whose number

of components is denoted by τ(n,k), i.e T (ξ) ∈ Rτ(n,k).

• (i) For 1 6 k 6 n, we write

T k = {(i1, · · · , ik) ∈ Nk : 1 6 i1 < · · · < ik 6 n}.

For I = (i1, · · · , ik) ∈ T k, we write dxI to denote dxi1 ∧ · · · ∧ dxik .

(ii) For i ∈ I, we write Îi = (i1, · · · , î, · · · , ik), where î denotes the absence
of the named index i. Note that, Iîp ∈ T

k−1 , for all 1 6 p 6 k. Similarly,

for i, j ∈ I, i < j, we write Iîj = (i1, · · · , î, · · · , ĵ, · · · , ik).

(iii) Given I ∈ T k1 and J ∈ T k2 with I ∩ J = ∅, i.e I and J have no
common index, we write [IJ ] to denote the increasing multiindex formed
by the the indices in I and J. In other words [IJ ] is the permutation of
the indices such that [IJ ] ∈ T k1+k2 . Furthermore, we define the sign of
[I, J ] , denoted by sgn [I, J ] , as

dx[IJ] = sgn [I, J ] dxI ∧ dxJ .

• We shall need one particular permutation operation of indices.

Definition 4 (1-flip) Let l, s ≥ 1, let J ∈ T s, I ∈ T l be written as,
J = {j1 . . . js}, I = {i1 . . . il} with I ∩J = ∅. Let J̃ ∈ T s, Ĩ ∈ T l. We say
that the pair (Ĩ , J̃) is obtained from the pair (I, J) by a 1-flip interchanging
jp with im, for some 1 ≤ p ≤ s, 1 ≤ m ≤ l, if

J̃ = [j1 . . . jp−1imjp+1 . . . js] and Ĩ = [i1 . . . im−1jpim+1 . . . il] ,

where the square brackets mean the increasing multiindex formed by the
indices inside the brackets.

References

[1] Ball, J. M. Convexity conditions and existence theorems in nonlinear
elasticity. Arch. Rational Mech. Anal. 63, 4 (1976/77), 337–403.

[2] Bandyopadhyay, S., Dacorogna, B., and Sil, S. Calculus of variations
with differential forms. J. Eur. Math. Soc. (JEMS) 17, 4 (2015), 1009–1039.

[3] Sil, S. Calculus of variations: A differential form approach. To appear in
Adv. Calc. Var..

[4] Sil, S. Calculus of Variations for Differential Forms, PhD Thesis. EPFL,
Thesis No. 7060 (2016).

8


