Note on an easy proof of Gaffney for vector fields in dimension 3 for simply connected domains

Swarnendu Sil

December 14, 2017

Theorem 1 (Vanishing normal part on the boundary) Let $\Omega \subset \mathbb{R}^{3}$ be open, bounded, smooth and simply connected. Let \hat{n} denote the exterior unit normal to $\partial \Omega$. Then for any $u \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ such that $\operatorname{curl} u \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$, $\operatorname{div} u \in L^{2}(\Omega)$ and $\hat{n} \cdot u=0$ on $\partial \Omega$, then $u \in W^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$ with the estimate

$$
\|\nabla u\|_{L^{2}}^{2} \leq c\left(\|\operatorname{curl} u\|_{L^{2}}^{2}+\|\operatorname{div} u\|_{L^{2}}^{2}\right) .
$$

Proof We divide the proof in three steps.
Step 1 We choose a ball B_{R} large enough such that $\Omega \subset \subset B_{R}$. We first find $\phi \in W^{1,2}\left(B_{R} \backslash \bar{\Omega}\right)$ such that,

$$
\begin{cases}\Delta \phi=0 & \text { in } B_{R} \backslash \bar{\Omega} \tag{1}\\ \frac{\partial \phi}{\partial \hat{n}}=\hat{n} \cdot \operatorname{curl} u & \text { on } \partial \Omega \\ \frac{\partial \phi}{\partial \hat{n}}=0 & \text { on } \partial B_{R}\end{cases}
$$

Note that the Neumann problem (1) is solvable since

$$
\int_{\partial \Omega} \hat{n} \cdot \operatorname{curl} u=\int_{\Omega} \operatorname{div}(\operatorname{curl} u)=0
$$

Then, we define $\chi \in L^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ as,

$$
\chi= \begin{cases}\operatorname{curl} u & \text { in } \Omega, \\ \nabla \phi & \text { in } B_{R} \backslash \bar{\Omega} \\ 0 & \text { if } x \in \mathbb{R}^{3} \backslash \overline{B_{R}}\end{cases}
$$

This implies,

$$
\operatorname{div} \chi=0 \quad \text { in } \mathbb{R}^{3}
$$

Indeed, for any $\theta \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$, we have,

$$
\begin{aligned}
\int_{\mathbb{R}^{3}}\langle\chi, \nabla \theta\rangle & =\int_{\Omega}\langle\operatorname{curl} u, \nabla \theta\rangle+\int_{B_{R} \backslash \bar{\Omega}}\langle\nabla \phi, \nabla \theta\rangle \\
& =\int_{\partial \Omega}(\hat{n} \cdot \operatorname{curl} u) \theta-\int_{\partial \Omega}(\hat{n} \cdot \nabla \phi) \theta+\int_{\partial B_{R}}(\hat{n} \cdot \nabla \phi) \theta=0 .
\end{aligned}
$$

Now we find $\psi \in W^{2,2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ such that

$$
\begin{equation*}
\Delta \psi=\chi \quad \text { in } \mathbb{R}^{3} \tag{2}
\end{equation*}
$$

Now $\operatorname{div} \chi=0$ in \mathbb{R}^{3} implies $\operatorname{div} \psi=0$ in \mathbb{R}^{3}. Indeed, we have, in \mathbb{R}^{3},
$\Delta(\operatorname{div} \psi)=\operatorname{div}(\nabla(\operatorname{div} \psi))=\operatorname{div}[($ curl curl $+\nabla \operatorname{div}) \psi]=\operatorname{div}(\Delta \psi)=\operatorname{div} \chi=0$.
Since $\operatorname{div} \psi \in L^{2}\left(\mathbb{R}^{3}\right)$, this implies $\operatorname{div} \psi=0$ in \mathbb{R}^{3}. We also have the estimate,

$$
\|\psi\|_{W^{2,2}} \leq c\|\operatorname{curl} u\|_{L^{2}}
$$

Step 2 Now we find $\xi \in W^{2,2}\left(\mathbb{R}^{3}\right)$ such that

$$
\begin{cases}\Delta \xi=\operatorname{div} u & \tag{3}\\ \text { in } \Omega \\ \frac{\partial \xi}{\partial \hat{n}}=-\hat{n} \cdot \operatorname{curl} \psi & \\ \text { on } \partial \Omega\end{cases}
$$

Note that the Neumann problem (3) is solvable since

$$
\int_{\Omega} \operatorname{div} u=\int_{\partial \Omega} \hat{n} \cdot u=0=-\int_{\Omega} \operatorname{div}(\operatorname{curl} \psi)=-\int_{\partial \Omega} \hat{n} \cdot \operatorname{curl} \psi
$$

We also have the estimate,

$$
\|\xi\|_{W^{2,2}} \leq c\left(\|\operatorname{div} u\|_{L^{2}}+\|\operatorname{curl} \psi\|_{W^{\frac{3}{2}, 2}(\partial \Omega)}\right)
$$

Step 3 Now we define

$$
h=u-\operatorname{curl} \psi-\nabla \xi
$$

We obtain,

$$
\begin{aligned}
\operatorname{curl} h & =\operatorname{curl} u-\operatorname{curl} \operatorname{curl} \psi=\operatorname{curl} u-\Delta \psi=0 & & \text { in } \Omega \\
\operatorname{div} h & =\operatorname{div} u-\operatorname{div} \nabla \xi=\operatorname{div} u-\Delta \xi=0 & & \text { in } \Omega \\
\hat{n} \cdot h & =\hat{n} \cdot(u-\operatorname{curl} \psi-\nabla \xi)=-\hat{n} \cdot \operatorname{curl} \psi-\frac{\partial \xi}{\partial \hat{n}}=0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Thus, h is a harmonic field with vanishing normal part on the boundary. Since Ω is simply connected, $h=0$ and thus

$$
u=\operatorname{curl} \psi+\nabla \xi \quad \text { in } \Omega
$$

Thus, we obtain,

$$
\begin{aligned}
\|\nabla u\|_{L^{2}}^{2} & \leq c\left(\|\nabla(\operatorname{curl} \psi)\|_{L^{2}}^{2}+\|\nabla(\nabla \xi)\|_{L^{2}}^{2}\right) \leq c\left(\|\psi\|_{W^{2,2}}^{2}+\|\xi\|_{W^{2,2}}^{2}\right) \\
& \leq c\left(\|\operatorname{curl} u\|_{L^{2}}^{2}+\|\operatorname{div} u\|_{L^{2}}^{2}\right)
\end{aligned}
$$

This concludes the proof.

